精英家教網 > 高中數學 > 題目詳情

(本題滿分14分)

    已知函數.

  (Ⅰ)若上的單調函數,試確定實數的取值范圍;[來源:學_科_網Z_X_X_K]

 。á颍┣蠛瘮在定義域上的極值;

(Ⅲ)設,求證:.

 

 

【答案】

 

  又由可得:

,                                           ………………10分

代入(*)得

                   ………13分

故直線.                              ………………14分

法二:顯然直線的斜率存在,設的方程為

代入               ………………8分

過焦點,顯然成立

 

…………………………①                            ………9分

                           ………………10分

由①②解得代入③           ……………………12分

整理得:                              ……………………13分

  的方程為                         ……………………14分

(Ⅱ)①當為定義域上的增函數,

沒有極值;                                  ………………6分

②當時,由

        由

  上單調遞增,上單調遞減.       …………8分

故當時,有極大值,但無極小值.    ……9分

 。á螅┯桑á瘢┲時,上單調遞減

  令,得

   所以

 .                                    ………………14分

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標與參數方程在極坐標系中,直線l 的極坐標方程為θ=
π
3
(ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數方程為
x=2cosα
y=1+cos2α
(α 參數).求直線l 和曲線C的交點P的直角坐標.
B.選修4-5:不等式選講
設實數x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江蘇省高三上學期期中考試數學 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數m的值

(Ⅱ)若ACRB,求實數m的取值范圍

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三上學期第三次月考理科數學卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足。

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數學 來源:2014屆江西省高一第二學期入學考試數學 題型:解答題

(本題滿分14分)已知函數.

(1)求函數的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習冊答案