A. | (x-$\frac{1}{3}$)2+(y-$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$ | B. | (x-$\frac{1}{3}$)2+(y+$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$ | ||
C. | (x-3)2+(y-2$\sqrt{3}$)2=16 | D. | (x-3)2+(y+2$\sqrt{3}$)2=16 |
分析 確定直線l的斜率為$\sqrt{3}$,可得方程為y=$\sqrt{3}$(x-$\frac{p}{2}$),與拋物線方程聯(lián)立可得3x2-5px+$\frac{3}{4}{p}^{2}$=0,利用|MN|=$\frac{16}{3}$,求出p,可得M的坐標(biāo),即可求出以M為圓心且與拋物線準(zhǔn)線相切的圓的標(biāo)準(zhǔn)方程.
解答 解:如圖,過點(diǎn)N作NE⊥MM′,由拋物線的定義,|MM′|=|MF|,|NN′|=|NF|.
∵$\overrightarrow{MF}$=3$\overrightarrow{FN}$,∴|MM′|=3|NN′|,
∴|ME|=2|NN′|,
∵|MN|=4|NN′|,
∴|MN|=2|ME|,
∴得∠EMF=$\frac{π}{3}$,所以直線l的斜率為$\sqrt{3}$
其方程為y=$\sqrt{3}$(x-$\frac{p}{2}$),
與拋物線方程聯(lián)立可得3x2-5px+$\frac{3}{4}{p}^{2}$=0,
∴x1+x2=$\frac{5}{3}$p,
∴|MN|=$\frac{8}{3}$p=$\frac{16}{3}$,
∴p=2,
∴M(3,2$\sqrt{3}$),r=4,
∴圓的標(biāo)準(zhǔn)方程為(x-3)2+(y-2$\sqrt{3}$)2=16.
故選:C.
點(diǎn)評(píng) 本題主要考查以M為圓心且與拋物線準(zhǔn)線相切的圓的標(biāo)準(zhǔn)方程,考查拋物線定義以及拋物線的性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 45° | C. | 30° | D. | 15° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com