函數(shù)y=-ln(x+1)的圖象大致是(  )
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象與圖象變化
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題先利用函數(shù)y=(x)與y=-f(x)圖象關(guān)系進(jìn)行圖象變換,再利用函數(shù)y=(x)與y=f(x+1)圖象得到最終結(jié)論.
解答: 解:將y=lnx的圖象關(guān)于y軸對稱,函數(shù)y=-lnx的圖象,此時漸近線x=0,函數(shù)在(0,+∞)單調(diào)遞減.
再將y=-lnx的圖象向左平移1個單位,函數(shù)y=-ln(x+1)的圖象,此時漸近線x=-1,函數(shù)在(-1,+∞)單調(diào)遞減.
故選:B.
點(diǎn)評:本題考查的知識是函數(shù)圖象與解析式的關(guān)系,根據(jù)圖象變換得到解析式的相應(yīng)變化,注意函數(shù)圖象與性質(zhì)(如:單調(diào)性、對稱性、漸近線等)的關(guān)系.本題難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,CA=CB=2,M,N是斜邊AB上的兩個動點(diǎn),且MN=
2
,則
CM
CN
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
,
c
滿足|
a
|=4,|
b
|=2
2
a
b
的夾角為
π
4
,(
c
-
a
)•(
c
-
b
)=-1,則|
c
-
a
|的最大值為( 。
A、
2
+
1
2
B、
2
2
+1
C、
2
+1
2
D、
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin2x的圖象向右平移
π
8
個單位后,所得圖象的一條對稱軸方程是( 。
A、x=
π
8
B、x=-
π
8
C、x=
π
4
D、x=-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足不等式組
x+2y-1≥0
2x+y-2≤0
x-y+2≥0
,則z=2x+2y的最小值為(  )
A、
5
2
B、2
C、3
32
D、3
3
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面區(qū)域
0≤x≤2
0≤y≤2
內(nèi)隨機(jī)取一點(diǎn),則所取的點(diǎn)恰好滿足x+y≤
2
的概率是(  )
A、
1
16
B、
1
8
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知cos2C=-
1
9
,C為銳角.
(Ⅰ)求sinC的值;
(Ⅱ)若a=2,△ABC的面積為
5
,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線l1:x-2y+3
5
=0相切,設(shè)點(diǎn)A為圓上一動點(diǎn),AM⊥x軸于點(diǎn)M,且動點(diǎn)N滿足
ON
=
3
3
OA
+(1-
3
3
OM
,設(shè)動點(diǎn)N的軌跡為曲線C.
(I)求曲線C的方程,
(Ⅱ)直線l與直線l1垂直且與曲線C交于B、D兩點(diǎn),求△OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)的8名同學(xué)準(zhǔn)備拼車去旅游,其中大一、大二、大三、大四每個年級各兩名,分乘甲、乙兩輛汽車.每車限坐4名同學(xué)(乘同一輛車的4名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的4名同學(xué)中恰有2名同學(xué)是來自于同一年級的乘坐方式共有
 
種.

查看答案和解析>>

同步練習(xí)冊答案