6.已知點$M({\sqrt{2},1})$,點N在圓O:x2+y2=1上,則∠OMN的最大值為( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 由題意,直線MN與圓O相切時,∠OMN最大,利用三角函數(shù)可得結(jié)論.

解答 解:由題意,直線MN與圓O相切時,∠OMN最大,
由于OM=$\sqrt{3}$,r=1,∴tan∠OMN=$\frac{\sqrt{3}}{3}$,
∴∠OMN的最大值為$\frac{π}{6}$.
故選:D.

點評 本題考查直線與圓的位置關(guān)系,考查學(xué)生的計算能力,半徑基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,已知直線y=kx+m與曲線y=f(x)相切于兩點,則F(x)=f(x)-kx有( 。
A.1個極大值點,2個極小值點B.2個極大值點,1個極小值點
C.3個極大值點,無極小值點D.3個極小值點,無極大值點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x-alnx-1,g(x)=$\frac{mx}{{e}^{x-1}}$,其中m、a均為實數(shù),e為自然對數(shù)的底數(shù).
(1)試討論函數(shù)g(x)的極值情況;
(2)設(shè)m=1,a<0,若對任意的x1,x2∈[3,4](x1≠x2),|f(x2)-f(x1)|<|$\frac{1}{g({x}_{2})}$-$\frac{1}{g({x}_{1})}$|恒成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=excosx.
(I)求f(x)在(0,f(0))處的切線方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[0,$\frac{π}{2}$],f(x)≥kx+1恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.$θ=\frac{π}{4}$(ρ≥0)表示的圖形是(  )
A.一條直線B.一條射線C.一條線段D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給出下列條件:
①$\vec a=\vec b$;   
②$|\vec a|=|\vec b|$;  
③$\vec a$與$\vec b$的方向相反;   
④$|\vec a|=0$或$|\vec b|=0$;
⑤$\vec a$與$\vec b$都是單位向量
其中能使$\vec a∥\vec b$成立的是①③④(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.有三個家庭每個家庭三個人共計9人坐成一排,如果要求每個家庭都在一起,共有3!3!3!3!種排法(用階乘的形式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.①已知sin($\frac{7}{2}π$-α)=-$\frac{1}{2}$,求sin2($\frac{9}{2}$π-α)+cos(3π-α)的值;
②化簡:$\frac{{sin(α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}}{tan(-π-α)sin(-π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是某幾何體的三視圖,則該幾何體的體積等于( 。
A.6B.8C.10D.12

查看答案和解析>>

同步練習(xí)冊答案