【題目】數(shù)列{n}中1=3,已知點(n,n+1)在直線y=x+2上,

(1)求數(shù)列{n}的通項公式;

(2)若bnn3n,求數(shù)列{bn}的前n項和Tn

【答案】(1);(2)

【解析】

(1)把點(n,n+1)代入直線y=x+2中可知數(shù)列{n}是以3為首項,以2為公差的等差數(shù),進而利用等差數(shù)列的通項公式求得答案.

(2)把(1)中求得n代入bnn3n,利用錯位相減法求得數(shù)列{bn}的前n項和Tn

(1)∵點(n,n+1)在直線y=x+2上.∴數(shù)列{n}是以3為首項,以2為公差的等差數(shù)列,

n=3+2(n﹣1)=2n+1.

(2)∵bnn3n,∴bn=(2n+1)3n

∴Tn=3×3+5×32+7×33+…+(2n﹣1)3n﹣1+(2n+1)3n

∴3Tn=3×32+5×33+…+(2n﹣1)3n+(2n+1)3n+1

由①﹣②得﹣2Tn=3×3+2(32+33+...+3n)﹣(2n+1)3n+1

=﹣2n3n+1

∴Tn=n3n+1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家A1,A2A33個歐洲國家B1,B2B3中選擇2個國家去旅游.

(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四面體中,,平面平面,,且.

(1)證明:平面;

(2)設為棱的中點,當四面體的體積取得最大值時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某公園內(nèi)有兩條道路,現(xiàn)計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知,

(1)若綠化區(qū)域的面積為1,求道路的長度;

(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設),當為何值時,該計劃所需總費用最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是由容量為100的樣本得到的頻率分布直方圖.其中前4組的頻率成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設最大頻率為a,在之間的數(shù)據(jù)個數(shù)為b,則a,b的值分別為(

A.,78

B.83

C.,78

D.,83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在平行于軸的直線上,且軸的交點為,動點滿足平行于軸,且.

1)求出點的軌跡方程.

2)設點,,求的最小值,并寫出此時點的坐標.

3)過點的直線與點的軌跡交于.兩點,求證.兩點的橫坐標乘積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面四邊形ABCD,,,,將沿BD翻折到與面BCD垂直的位置.

證明:面ABC;

若E為AD中點,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,且上單調(diào)遞增,且函數(shù)的圖象恰有兩個不同的交點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】軸交于、兩點(點在點的左側(cè)),、是分別過、點的圓的切線,過此圓上的另一個點點是圓上任一不與、重合的動點)作此圓的切線,分別交、兩點,且兩直線交于點

)設切點坐標為,求證:切線的方程為

設點坐標為,試寫出的關系表達式(寫出詳細推理與計算過程)

查看答案和解析>>

同步練習冊答案