1.若f(x)+4f(-x)=log2(x+3),則f(1)=$\frac{2}{15}$.

分析 利用函數(shù)的解析式列出方程求解即可.

解答 解:f(x)+4f(-x)=log2(x+3),
則f(1)+4f(-1)=2,f(-1)+4f(1)=1,
解得f(1)=$\frac{2}{15}$.
故答案為:$\frac{2}{15}$.

點(diǎn)評(píng) 本題考查函數(shù)的解析式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.關(guān)于x的方程($\frac{1}{3}$)|x|-a-1=0有解,則a的取值范圍是( 。
A.(0,1]B.(-1,0]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中A=30°,角A所對(duì)的邊長(zhǎng)為a=3,則△ABC外接圓的面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.傾斜角為θ的直線過(guò)離心率是$\frac{{\sqrt{3}}}{2}$的橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)右焦點(diǎn)F,直線與C交于A,B兩點(diǎn),若$\overrightarrow{AF}$=7$\overrightarrow{FB}$,則θ=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.$f(x)=\frac{2}{x}$B.f(x)=-x+1C.f(x)=|x-1|D.f(x)=2x2+3x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知正項(xiàng)數(shù)列{an}前n項(xiàng)和為Sn,且4Sn=an2+2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{2}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.對(duì)于橢圓C,$\frac{x{\;}^{2}}{8}$+$\frac{y{\;}^{2}}{4}$=1,過(guò)原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn)(非頂點(diǎn)),
點(diǎn)D在橢圓上,AD⊥AB,直線BD與x軸,y軸分別交于M,N.
(1)證明:①kADkBD是定值; ②直線AM⊥x軸;
(2)求△OMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.定義函數(shù)y=f(x),x∈D(定義域),若存在常數(shù)C,對(duì)于任意x1∈D,存在唯一的x2∈D,使得$\frac{{f({x_1})+f({x_2})}}{2}$=C,則稱函數(shù)f(x)在D上的“均值”為C,已知f(x)=lgx,x∈[10,100],則函數(shù)f(x)在[10,100]上的均值為( 。
A.$\frac{3}{2}$B.$\frac{3}{4}$C.$\frac{1}{10}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.點(diǎn)P(1,-2)在直線4x-my+12=0上,則實(shí)數(shù)m=-8.

查看答案和解析>>

同步練習(xí)冊(cè)答案