分析:(1)①對(duì)于數(shù)列{an}的前n項(xiàng)和Sn=2an-2,當(dāng)n=1時(shí),a1=S1.當(dāng)n≥2時(shí),an=Sn-Sn-1,再利用等比數(shù)列的通項(xiàng)公式即可得出;②利用①和對(duì)數(shù)的運(yùn)算法則即可得出;③分類討論:當(dāng)n=1,2時(shí),an<bn;當(dāng)n≥3時(shí),利用二項(xiàng)式定理展開即可得出an>bn.
(2)由(1)可得當(dāng)n≥4時(shí),2n≥n2.再利用數(shù)學(xué)歸納法即可證明不等式.
解答:解:(1)①對(duì)于數(shù)列{a
n}的前n項(xiàng)和S
n=2a
n-2,當(dāng)n=1時(shí),a
1=S
1=2a
1-2,解得a
1=2.當(dāng)n≥2時(shí),a
n=Sn-S
n-1=2a
n-2-(2a
n-1-2),化為a
n=2a
n-1,
∴數(shù)列{a
n}是等比數(shù)列,首項(xiàng)為2,公比為2,∴
an=2×2n-1=2n.
②∴b
n=2log
2a
n+1=
2log22n+1=2n+1.
③當(dāng)n=1時(shí),a
1=2,b
1=3,a
1<b
1;當(dāng)n=2時(shí),
a2=22=4,b
2=2×2+1=5,a
2<b
2.
當(dāng)n≥3時(shí),
an=(1+1)n=1+n+…+n+1>1+2n,
∴a
n>b
n.
綜上可知:當(dāng)n=1,2時(shí),a
n<b
n;當(dāng)n≥3時(shí),a
n>b
n.
(2)首先我們證明當(dāng)n≥4時(shí),2
n≥n
2事實(shí)上,記
{dn}:dn=2n-n2.
∵
dn+1-dn=2n-(2n+1)=an-bn由(1)n≥4時(shí),a
n>b
n.
∴d
n<d
n+1.而d
4=0.
∴當(dāng)n≥4時(shí),d
n≥d
4=0即2
n≥n
2.
從而
>.
下面利用“數(shù)學(xué)歸納法”證明:
①當(dāng)n=1時(shí),左邊=
=
=1,右邊=
+=
,∴左邊>右邊,此時(shí)不等式成立;
當(dāng)n=2時(shí),左邊=
+=
+=2,右邊=
+=
,∴左邊>右邊,此時(shí)不等式成立;
當(dāng)n=3時(shí),左邊=
++
=
++
=
,右邊=
+=
,∴左邊=右邊,此時(shí)不等式成立;
當(dāng)n=4時(shí),左邊=
++
+
=
++
+
=
,右邊=
+=
,∴左邊=右邊,此時(shí)不等式成立;
②假設(shè)當(dāng)n=k≥4時(shí),
++…+
≥
+成立.
則當(dāng)n=k+1時(shí),左邊=
++…+
+
≥
++
≥+
+=
+=右邊.
因此此時(shí)當(dāng)n=k+1時(shí),不等式也成立.
綜上可知:不等式對(duì)于?n∈N
*都成立.
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式、對(duì)數(shù)的運(yùn)算法則、二項(xiàng)式定理、數(shù)學(xué)歸納法等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.