【題目】函數(shù)f(x)=lnx﹣ax2+x有兩個零點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(0,1)
B.(﹣∞,1)
C.(﹣∞,
D.(0,

【答案】A
【解析】解:∵函數(shù)f(x)=lnx﹣ax2+x有兩個不同的零點(diǎn),
不妨令g(x)=lnx,h(x)=ax2﹣x,
將零點(diǎn)問題轉(zhuǎn)化為兩個函數(shù)交點(diǎn)的問題;
又函數(shù)h(x)=x(ax﹣1),
當(dāng)a≤0時,g(x)和h(x)只有一個交點(diǎn),不滿足題意;
當(dāng)a>0時,由lnx﹣ax2+x=0,得a= ;
令r(x)= ,則r′(x)= = ,
當(dāng)0<x<1時,r'(x)>0,r(x)是單調(diào)增函數(shù),
當(dāng)x>1時,r'(x)<0,r(x)是單調(diào)減函數(shù),且 >0,∴0<a<1;
或當(dāng)a>0時,作出兩函數(shù)g(x)=lnx,h(x)=ax2﹣x的圖象,如圖所示;
g(x)=lnx交x軸于點(diǎn)(1,0),
h(x)=ax2﹣x交x軸于點(diǎn)(0,0)和點(diǎn)( ,0);
要使方程有兩個零點(diǎn),應(yīng)滿足兩函數(shù)有兩個交點(diǎn),
>1,解得0<a<1;
∴a的取值范圍是(0,1).
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合A={x|x2<2x},集合B={x|x< },則A∩(RB)等于(
A.(﹣2, ]
B.(2,+∞)
C.(﹣∞, ]
D.D[ ,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )

A. 時,函數(shù)是增函數(shù),因?yàn)?/span>,所以是增函數(shù),這種推理是合情合理.

B. 在平面中,對于三條不同的直線, , ,若, ,將此結(jié)論放在空間中也是如此,這種推理是演繹推理.

C. 命題 , 的否定是 , .

D. 若分類變量的隨機(jī)變量的觀察值越小,則兩個分類變量有關(guān)系的把握性越小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐,四邊形是矩形,平面平面, 中點(diǎn).

Ⅰ)求證: 平面;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知D點(diǎn)在⊙O直徑BC的延長線上,DA切⊙O于A點(diǎn),DE是∠ADB的平分線,交AC于F點(diǎn),交AB于E點(diǎn).

(1)求∠AEF的度數(shù);
(2)若AB=AD,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè), ,令, , .

1)寫出, 的值,并猜想數(shù)列的通項(xiàng)公式;

2)用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C底面ABC

(1)若DBC的中點(diǎn),求證:ADCC1

(2)過側(cè)面BB1C1C的對角線BC1的平面交側(cè)棱于M,若AM=MA1,求證:截面MBC1側(cè)面BB1C1C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為F1 F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,動直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M.

(1)求點(diǎn)M的軌跡的方程;

2)設(shè)x軸交于點(diǎn)Q, 上不同于點(diǎn)Q的兩點(diǎn)RS,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)fx)的最小正周期及單調(diào)遞增區(qū)間;

(2)求fx)在區(qū)間上的最大值和最小值及相應(yīng)的x值;

查看答案和解析>>

同步練習(xí)冊答案