16.lg10+lne-lg0.01=4.

分析 利用對數(shù)性質(zhì)、運算法則直接求解.

解答 解:lg10+lne-lg0.01
=1+1-(-2)
=4.
故答案為:4.

點評 本題考查對數(shù)式化簡求值,是基礎(chǔ)題,解題時要認真審題,注意對數(shù)性質(zhì)、運算法則的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.P為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{{{a^2}-4}}$=1(a>2)上位于第一象限內(nèi)一點,且OP=2$\sqrt{2}$,令∠POx=θ,則θ的取值范圍為( 。
A.$(0,\frac{π}{12}]$B.$(0,\frac{π}{6}]$C.$(0,\frac{π}{4}]$D.$(0,\frac{π}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-6≤0}\\{x-2y≤0}\end{array}\right.$,則z=2x-3y+2016的最大值為2017.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.長方體ABCD-A1B1C1D1的8個頂點都在球O的表面上,E為AB的中點,CE=3,cos∠ACE=$\frac{{5\sqrt{3}}}{9}$,且四邊形ABB1A1為正方形,則球O的直徑為4或$\sqrt{51}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.利用“二分法”判斷方程①3x2-lnx=0;②x+lnx=0;③x3-3x2+3x-4=0;④x+$\frac{1}{x}$=2中在區(qū)間(0,1)內(nèi)有實數(shù)解,則方程的序號為②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四式不能化簡為$\overrightarrow{AD}$的是( 。
A.$(\overrightarrow{AB}+\overrightarrow{CD})+\overrightarrow{BC}$B.$(\overrightarrow{AD}+\overrightarrow{MB})+(\overrightarrow{BC}+\overrightarrow{CM})$C.$\overrightarrow{OC}-\overrightarrow{OA}+\overrightarrow{CD}$D.$\overrightarrow{MB}+\overrightarrow{AD}-\overrightarrow{BM}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,A,B,C,D四點在同一圓上,AB∥CD,AD的延長線與BC的延長線交于E點.
(1)證明:EC=ED.
(2)延長CD到F,延長DC到G,連接EF、EG,使得EF=EG,證明:A,B,G,F(xiàn)四點共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知命題p:實數(shù)x滿足${x^2}-2x-8≤C_n^0-C_n^1+C_n^2-C_n^3+…+{(-1)^n}C_n^n$;命題q:實數(shù)x滿足|x-2|≤m(m>0).
(1)當m=3時,若“p且q”為真,求實數(shù)x的取值范圍;
(2)若“非p”是“非q”的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在極坐標系下,點(2,$\frac{π}{6}$)到直線ρcos(θ-$\frac{2π}{3}$)=1的距離為1.

查看答案和解析>>

同步練習(xí)冊答案