如圖,已知兩個(gè)正方形ABCD和DCEF不在同一平面內(nèi),平面ABCD⊥平面DCEF,M,N分別為AB,DF的中點(diǎn),若兩個(gè)正方形的頂點(diǎn)都在球O上,且球O的表面積為12π,則MN的長(zhǎng)為
 
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:求出球的半徑,可得正方形的邊長(zhǎng),利用兩個(gè)正方形ABCD和DCEF不在同一平面內(nèi),平面ABCD⊥平面DCEF,M為AB的中點(diǎn),可得MO⊥平面DCEF,利用勾股定理,即可得出結(jié)論.
解答: 解:由題意,
∵球O的表面積為12π,
∴球的半徑為
3
,
∵兩個(gè)正方形的頂點(diǎn)都在球O上,
∴正方形的邊長(zhǎng)為2.
取CD中點(diǎn)O,連接ON,則
∵兩個(gè)正方形ABCD和DCEF不在同一平面內(nèi),平面ABCD⊥平面DCEF,M為AB的中點(diǎn),
∴MO⊥平面DCEF,
∴MO⊥ON,
∵M(jìn)O=2,ON=
2

∴MN=
6

故答案為:
6
點(diǎn)評(píng):本題考查點(diǎn)、線、面間的距離計(jì)算,考查球O的表面積,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

U={1,2},A={x|x2+px+q=0},∁UA={1},則p+q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=f′(x)cosx的圖象向左平移
π
4
個(gè)單位,得到函數(shù)y=1-2sin2x的圖象,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與橢圓4x2+9y2=36有相同的焦距,且離心率為
5
5
的橢圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=logax的圖象與y=logbx的圖象關(guān)于x軸對(duì)稱(chēng),則a與b滿(mǎn)足的關(guān)系式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)的定義域是(1,3),則f(3-x)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|log2x|,0<x≤4
x2-10x+26,x>4
,若a<b<c<d,且f(a)=f(b)=f(c)=f(d),則a+b+c+d的取值范圍是( 。
A、(
25
2
57
4
B、(
9
4
,10)
C、(
49
4
29
2
D、(11,
29
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,對(duì)于曲線Ψ所在平面內(nèi)的點(diǎn)O,若存在以O(shè)為頂點(diǎn)的角α,使得α≥∠AOB對(duì)于曲線Ψ上的任意兩個(gè)不同的點(diǎn)A、B恒成立,則稱(chēng)角α為曲線Ψ上的任意兩個(gè)不同的點(diǎn)A、B恒成立,則稱(chēng)角α為曲線Ψ的相對(duì)于點(diǎn)O的“界角”,并稱(chēng)其中最小的“界角”為曲線Ψ的相對(duì)于點(diǎn)O的“確界角”.已知曲線C:y=
1+9x2
(x≤0)
xex-1+1(x>0)
(其中e=2.71828…是自然對(duì)數(shù)的底數(shù)),O為坐標(biāo)原點(diǎn),則曲線C的相對(duì)于點(diǎn)O的“確界角”為(  )
A、
π
4
B、
π
3
C、
3
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱柱ABC-A1B1C1中,點(diǎn)A,BC1的中點(diǎn)M以及B1C1的中點(diǎn)N所決定的平面把三棱柱切割成體積不同的兩部分,那么小部分的體積與大部分的體積比是( 。
A、13:36
B、13:23
C、23:36
D、以上都不正確

查看答案和解析>>

同步練習(xí)冊(cè)答案