已知函數(shù)f(x)和g(x)的定義域都是R,f(x)是奇函數(shù),g(x)是偶函數(shù).
(1)判斷F(x)=[f(x)]2-g(x)的奇偶性;
(2)如果f(x)+g(x)=2x+x,求函數(shù)f(x)和g(x)的解析式.
考點:指數(shù)函數(shù)綜合題
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意,F(xiàn)(x)的定義域為R,F(xiàn)(-x)=[f(-x)]2-g(-x)=[-f(x)]2-g(x)=[f(x)]2-g(x)=F(x),從而判斷;
(2)由題意,f(x)+g(x)=2x+x,-f(x)+g(x)=2-x-x,從而解出f(x)和g(x).
解答: 解:(1)F(x)=[f(x)]2-g(x)的定義域為R,
又∵f(x)是奇函數(shù),g(x)是偶函數(shù),
∴f(-x)=-f(x),g(-x)=g(x),
∴F(-x)=[f(-x)]2-g(-x)
=[-f(x)]2-g(x)=[f(x)]2-g(x)=F(x),
則F(x)=[f(x)]2-g(x)是偶函數(shù);
(2)∵f(x)+g(x)=2x+x①,
∴f(-x)+g(-x)=2-x-x,
即-f(x)+g(x)=2-x-x②,
由①②聯(lián)立解得,
g(x)=
2x+2-x
2
,f(x)=
2x-2-x
2
+x
點評:本題考查了函數(shù)的奇偶性的綜合應(yīng)用,注意函數(shù)觀點轉(zhuǎn)化為方程觀點,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的是一個算法的程序框圖,已知a1=3,輸出的b=7,則a2等于( 。
A、9B、10C、11D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,若a1=31,d=-6,等差數(shù)列{an}的前n項和為Sn,則數(shù)列{Sn}中與0最接近的項是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點,對稱軸為坐標軸,且過A(0,2),B(
1
2
,
2
),
(1)求橢圓C的方程;
(2)設(shè)過E(1,0)的直線l與橢圓C交于兩個不同點M、N,求
EM
EN
的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的圖象上存在不同兩點A,B,設(shè)線段AB的中點為M(x0,y0),使得f(x)在點(x0,f(x0))處的切線l與直線AB平行或重合,則稱切線l為函數(shù)f(x)的“平衡切線”.則函數(shù)f(x)=2aln(x+1)+x2-2x的“平衡切線”的條數(shù)為(  )
A、2條或無數(shù)條
B、1條或無數(shù)條
C、0條或無數(shù)條
D、2條或0條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題中,真命題的個數(shù)有(  )
①若a,b,c∈R,則“ac2>bc2”是“a>b”成立的充分必要條件;
②命題“?x∈R使得x2+x+1>0的否定是“?x∈R均有x2+x+1≤0”;
③命題“若|x|≥2,則x≥2或x≤-2”的否命題是“若|x|<2,則-2<x<2”;
④函數(shù)f(x)=lnx+x-
3
2
在區(qū)間(1,2)上有且僅有一個零點.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,AB、BC、CD、DA上分別取E、F、G、H四點,如果EH、FG交于一點P,則( 。
A、P一定在直線BD上
B、P一定在直線AC上
C、P在直線AC或BD上
D、P既不在直線BD上,也不在AC上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|4-2k<x<2k-8},B={x|-k<x<k},若A⊆B,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法,其中正確命題的序號為
 

①若函數(shù)f(x)=x(x-c)2在x=2處有極大值,則c=2實數(shù)或6;
②對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-1)f′(x)≥0,則必有f(0)+f(2)>2f(1);
③若函數(shù)f(x)=x3-3x在(a2-17,a)上有最大值,則實數(shù)a的取值范圍為(-1,4);
④已知函數(shù)f(x)是定義在R上的奇函數(shù)f(1)=0,xf′(x)-f(x)>0(x>0),則不等式f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

同步練習(xí)冊答案