設(shè)集合A={x|2x≤4},集合B為函數(shù)y=lg(x-1)的定義域,則A∩B=( )
A.(1,2)
B.[1,2]
C.[1,2)
D.(1,2]
【答案】分析:通過指數(shù)不等式求出集合A,求解函數(shù)的定義域求出集合B,然后求解交集即可.
解答:解:因?yàn)榧螦={x|2x≤4}={x|x≤2},集合B為函數(shù)y=lg(x-1)的定義域?yàn)椋簕x|x>1},
則A∩B={x|x≤2}∩{x|x>1}={x|1<x≤2}.
故選D.
點(diǎn)評:本題考查指數(shù)不等式的求法,函數(shù)的定義域的求法集合的交集的運(yùn)算,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)集合A={x|2x-2<1},B={x|y=ln(1-x)},則A∩B為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)集合A={x|2x+3<5},B={x|-3<x<2},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•無為縣模擬)設(shè)集合A={x|
2
x-2
 
<1},B={x|1-x≥0},則A∩B
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|2x-1≤3},集合B是函數(shù)y=lg(x-1)的定義域;則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|
2x+1
x-2
≤0}
,集合B是f(x)=ln(1-|x|)的定義域,則A∪B( 。

查看答案和解析>>

同步練習(xí)冊答案