15.產(chǎn)品中有正品4件,次品3件,從中任取2件:
①恰有一件次品和恰有2件次品;
②至少有1件次品和全都是次品;
③至少有1件正品和至少有一件次品;
④至少有一件次品和全是正品.
上述四組事件中,互為互斥事件的組數(shù)是( 。
A.1B.2C.3D.4

分析 利用互斥事件的定義直接求解.

解答 解:產(chǎn)品中有正品4件,次品3件,從中任取2件:
在①中,恰有一件次品和恰有2件次品不能同時(shí)發(fā)生,故①是互斥事件;
在②中,至少有1件次品和全都是次品能同時(shí)發(fā)生,故②不是互斥事件;
在③中,至少有1件正品和至少有一件次品能同時(shí)發(fā)生,故③不是互斥事件;
④至少有一件次品和全是正品不能同時(shí)發(fā)生,故④是互斥事件.
故選:B.

點(diǎn)評(píng) 本題考查互斥事件等基礎(chǔ)知識(shí),考查推理論證能力,考查基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知復(fù)數(shù)z=1+bi(b為正實(shí)數(shù)),且(z-2)2為純虛數(shù).
(Ⅰ)求復(fù)數(shù)z;
(Ⅱ)若$ω=\frac{z}{2+i}$,求復(fù)數(shù)ω的模|ω|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}2x-y≥0\\ 2x+y≤6\\ y≥\frac{1}{2}\end{array}\right.$,則$y+\frac{1}{2x}$的最大值為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若點(diǎn)${A_n}({n,\frac{S_n}{n}})$在函數(shù)f(x)=-x+c的圖象上運(yùn)動(dòng),其中c是與x無(wú)關(guān)的常數(shù),且a1=3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記${b_n}={a_{a_n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an},a2=2,an+an+1=3n,n∈N*,則a2+a4+a6+a8+a10+a12=57.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合P={x|1≤x≤3},Q={x|x2≥4},則P∩(∁RQ)=( 。
A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a2=4,a${\;}_{n+1}^{2}$=6Sn+9n+1,n∈N*,各項(xiàng)均為正數(shù)的等比數(shù)列{bn}滿足b1=a1,b3=a2
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)若cn=(3n-2)•bn,數(shù)列{cn}的前n項(xiàng)和為Tn
①求Tn;
②若對(duì)任意n≥2,n∈N*,均有(Tn-5)m≥6n2-31n+35恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為了研究學(xué)生喜愛(ài)打籃球是否與性別有關(guān),某興趣小組對(duì)本班48名同學(xué)進(jìn)行了問(wèn)卷調(diào)查,得到了如下列聯(lián)表:
喜愛(ài)打籃球不喜愛(ài)打籃球合計(jì)
男生22628
女生101020
合計(jì)321648
(Ⅰ)判斷是否有95%的把握認(rèn)為喜愛(ài)籃球與性別有關(guān)?請(qǐng)說(shuō)明理由;
(Ⅱ)若從女同學(xué)中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛(ài)打籃球的女同學(xué)人數(shù)為X,求X的分布列與期望.
附:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|則(  )
A.$\overrightarrow{a}$⊥$\overrightarrow$B.|$\overrightarrow{a}$|=|$\overrightarrow$|C.$\overrightarrow{a}$∥$\overrightarrow$D.|$\overrightarrow{a}$|>|$\overrightarrow$|

查看答案和解析>>

同步練習(xí)冊(cè)答案