觀察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般結論是


  1. A.
    n+(n+1)+(n+2)+…+(3n-2)=n2
  2. B.
    n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
  3. C.
    n+(n+1)+(n+2)+…+(3n-1)=n2
  4. D.
    n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2
B
分析:分析已知中1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,各式子左右兩邊的形式,包括項數(shù),每一個式子第一數(shù)的值等,歸納分析后,即可得到結論.
解答:1=12,
2+3+4=32,
3+4+5+6+7=52,
4+5+6+7+8+9+10=72
…,
由上述式子可以歸納:
左邊每一個式子均有2n-1項,且第一項為n,則最后一項為3n-2
右邊均為2n-1的平方
故選B
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

9、觀察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般結論是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列各式:1=1,1-3=-2;1-3+5=3;1-3+5-7=-4;…,則第8個等式為
1-3+5-7+9-11+13-15=-8
1-3+5-7+9-11+13-15=-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可得猜想:
n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
;請對上面的猜想給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年陜西省商洛市山陽中學高三(上)摸底數(shù)學試卷(文科)(解析版) 題型:填空題

觀察下列各式:1=1,1-3=-2;1-3+5=3;1-3+5-7=-4;…,則第8個等式為   

查看答案和解析>>

科目:高中數(shù)學 來源:《第2章 推理與證明》2010年單元測試卷(解析版) 題型:選擇題

觀察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般結論是( )
A.n+(n+1)+(n+2)+…+(3n-2)=n2
B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-1)=n2
D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2

查看答案和解析>>

同步練習冊答案