已知x=1為奇函數(shù)f(x)=
1
3
ax3+bx2+(a2-6)x的極大值點,
(1)求f(x)的解析式;
(2)若P(m,n)在曲線y=f(x)上,證明:過點P作該曲線的切線至多存在兩條.
(1)由已知f(x)為奇函數(shù),故b=0,
所以f(x)=
1
3
ax3+(a2-6)x,f′(x)=ax2+a2-6,
由極值的條件可得f′(1)=a+a2-6=0,
解得a=-3或a=2,
當a=2時,x=1為f(x)的極小值點,與已知矛盾,舍去.
故f(x)=-x3+3x;
(2)由(1)知n=-m3+3m,設切點為(x0-x03+3x0),
則切線方程為y-(-x03+3x0)=(-3x02+3)(x-x0).
P點在切線上,有-m3+3m-(-x03+3x0)=(-3x02+3)(m-x0),
-(m3-x03)+3(m-x0)=(-3x02+3)(m-x0),
分解因式可得-(m-x0)(m2+mx0+x02)+3(m-x0)=(-3x02+3)(m-x0)
即(x0-m)(2x02-mx0-m2)=0,即(x0-m)2(x0-
-m
2
)
=0,
當m=0時,x0=0,此時原曲線僅有一條切線;
當m≠0時,x0=m,或x0=-
m
2
,此時原曲線有兩條切線.
故過點P作該曲線的切線至多存在兩條.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2
5+ax5+x
,(-1≤x≤1)
為奇函數(shù),其中a為不等于1的常數(shù);
(1)求a的值;
(2)若對任意的x∈[-1,1],f(x)>m恒成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)對任意實數(shù)x、y滿足f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(
π
2
)=1.給出下列結論:其中,正確的結論序號是
②③
②③

f(
π
4
)=
1
2
                     
②f(x)為奇函數(shù)
③f(x)為周期函數(shù)              
④f(x)在(0,π)內單調遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x=1為奇函數(shù)f(x)=
13
ax3+bx2+(a2-6)x的極大值點,
(1)求f(x)的解析式;
(2)若P(m,n)在曲線y=f(x)上,證明:過點P作該曲線的切線至多存在兩條.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年四川省成都七中高二(下)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知x=1為奇函數(shù)f(x)=ax3+bx2+(a2-6)x的極大值點,
(1)求f(x)的解析式;
(2)若P(m,n)在曲線y=f(x)上,證明:過點P作該曲線的切線至多存在兩條.

查看答案和解析>>

同步練習冊答案