分析 (I)由題意可知:b=3,$\frac{a-c}{a+c}=\frac{1}{9}$及a2=c2+9,即可求得a和b的值,由e=$\frac{c}{a}$,即可求得離心率及橢圓方程;
(Ⅱ)由PF1⊥PF2,可知P在以O(shè)為圓心,以4為半徑的圓上,列方程組,即可求得m和n的值,求得P的坐標(biāo).
解答 解:(I)由題意可知:2b=6,b=3,
$\frac{a-c}{a+c}=\frac{1}{9}$,
由a2=c2+9,
解得:a=5,c=4,
∴離心率e=$\frac{c}{a}$=$\frac{4}{5}$,
∴橢圓C的標(biāo)準(zhǔn)方程$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$;
(Ⅱ)由PF1⊥PF2,
∴P為以F1F2為直徑的圓上,即m2+n2=16,
$\left\{\begin{array}{l}{\frac{{m}^{2}}{25}+\frac{{n}^{2}}{9}=1}\\{{m}^{2}+{n}^{2}=16}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{m}^{2}=\frac{175}{16}}\\{{n}^{2}=\frac{81}{16}}\end{array}\right.$,
n>0時(shí),$\left\{\begin{array}{l}{m=-\frac{5\sqrt{7}}{4}}\\{n=\frac{9}{4}}\end{array}\right.$或$\left\{\begin{array}{l}{m=\frac{5\sqrt{7}}{4}}\\{n=\frac{9}{4}}\end{array}\right.$,
點(diǎn)P的坐標(biāo)($\frac{5\sqrt{7}}{4}$,$\frac{9}{4}$),(-$\frac{5\sqrt{7}}{4}$,$\frac{9}{4}$).
點(diǎn)評 本題考查橢圓的標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查求橢圓與圓交點(diǎn)坐標(biāo)的方法,考查計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=3sin\frac{π}{6}t+12$ | B. | $y=-3sin\frac{π}{6}t+12$ | C. | $y=3sin\frac{π}{12}t+12$ | D. | $y=3cos\frac{π}{12}t+12$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
高消費(fèi)群 | 非高消費(fèi)群 | 合計(jì) | |
男 | |||
女 | 10 | 50 | |
合計(jì) |
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com