精英家教網 > 高中數學 > 題目詳情

設|數學公式|=|數學公式|=|數學公式|=1,且數學公式數學公式=0,數學公式數學公式=0,數學公式數學公式=0,若數學公式=數學公式+2數學公式+3數學公式,數學公式=-2數學公式+3數學公式-4數學公式,數學公式=4數學公式+數學公式-數學公式,則|數學公式|=________.

7
分析:由已知條件可以建立空間直角坐標系,先求出的坐標,再利用模的計算公式即可得出.
解答:∵,
=(1,2,3)+(-2,3,-4)+(4,1,-1)=(3,6,-2).
==7.
故答案為7.
點評:熟練掌握向量的模的計算公式是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=loga(x+b)(a>0,a≠1)),的圖象過點(2,1)和點(8,2),則a+b=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知△OFQ的面積為2
6
,且
OF
FQ
=m

(1)當
6
<m<4
6
時,求向量
OF
FQ
的夾角θ的取值范圍;
(2)設|
OF
|=c,m=(
6
4
-1)c2
,若以中心O為坐標原點,焦點F在x非負半軸上的雙曲線經過點Q,當|
OQ
|
取得最小值時,求此雙曲線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

直線l:(m+1)x+2y-4m-4=0(m∈R)恒過定點C,圓C是以點C為圓心,以4為半徑的圓.
(1)求圓C的方程;
(2)設圓M的方程為(x-4-7cosθ)2+(y-7sinθ)2=1,過點M上任意一點P分別作圓C的兩條切線PE、PF,切點為E、F,求
CE
CF
的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

7、設集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},則A∪B=
{1,2,5}

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在△OAB中,
OC
=
1
3
OA
OD
=
1
2
OB
,AD與BC交于點M,
OA
=
a
OB
=
b
,
(1)試用向量
a
b
表示
OM
;
(2)在線段AC上取一點E,線段BD上取一點F,使EF過M點,
OE
OA
,
OF
OB
,求證:
1
λ
+
2
μ
=5

查看答案和解析>>

同步練習冊答案