A. | f(cosα)≥f(cosβ) | B. | f(sinα)≤f(sinβ) | C. | f(sinα)≥f(cosβ) | D. | f(sinα)≤f(cosβ) |
分析 由當x1,x2∈(1,+∞)時,(x1-x2)[f(x1)-f(x2)]>0恒成立,得函數(shù)為增函數(shù),由f(x+1)是偶函數(shù),得到函數(shù)關于直線x=1對稱,當x∈(-∞,1)時,函數(shù)f(x)為減函數(shù),利用函數(shù)的單調性進行比較即可.
解答 解:∵當x1,x2∈(1,+∞)時,(x1-x2)[f(x1)-f(x2)]>0恒成立,
∴當x∈(1,+∞)時,函數(shù)f(x)為增函數(shù),
∵f(x+1)是偶函數(shù),
∴f(-x+1)=f(x+1),
∴函數(shù)關于直線x=1對稱,
∴當x∈(-∞,1)時,函數(shù)f(x)為減函數(shù),
∵α、β是銳角△ABC的兩個內角,
∴α+β>90°,
∴90°>α>90°-β>0°,
∴1>sinα>cosβ>0,
∴f(sinα)<f(cosβ).
故選D.
點評 本題主要考查函數(shù)值的大小比較,根據(jù)條件判斷函數(shù)的單調性,利用函數(shù)奇偶性和單調性之間的關系是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [2,+∞) | B. | (-∞,-6] | C. | [-6,2] | D. | (-∞,-6]∪[2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com