給定k∈N*,設(shè)函數(shù)f:N*→N*滿足:對于任意大于k的正整數(shù)n,f(n)=n-k.已知命題:k=3,當n≤3且n∈N*時,2≤f(n)≤3為真命題,則不同的函數(shù)f的個數(shù)為
 
考點:映射
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:當k=3時,f(n)=n-3,然后根據(jù)2≤f(n)≤3,確定函數(shù)的個數(shù).
解答: 解:∵n≤3,k=3,2≤f(n)≤3,
∴f(1)=2或3,且 f(2)=2或3 且 f(3)=2或3.
根據(jù)分步計數(shù)原理,可得共2×2×2=8個不同的函數(shù).
故答案為:8
點評:本題主要考查映射的定義,以及分步計數(shù)原理的應(yīng)用,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x-1|+|x+3|≤6的解集為( 。
A、[-4,2]
B、[2,+∞)
C、(-∞,-4]
D、(-∞,-4]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,甲船以每小時15
2
海里的速度向正北方航行,乙船按固定方向勻速直線航行.當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里;當甲船航行40分鐘到達A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10
2
海里.問乙船每小時航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律,設(shè)第n個圖案中黑色瓷磚數(shù)為an,白色瓷磚數(shù)為bn,則
a40
b40
=( 。
A、
1
10
B、
1
8
C、
1
6
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足:對任意的x1,x2∈(-∞,0](x1≠x2),都有(x2-x1)•[f(x2)-f(x1)]>0,則( 。
A、f(-2)<f(1)<f(3)
B、f(1)<f(-2)<f(3)
C、f(3)<f(-2)<f(1)
D、f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球的半徑為2,相互垂直的兩個平面分別截球面得兩個圓,若兩圓的公共弦長為2,則兩圓的圓心距等于C( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,若A=60°,a=
3
,c=2,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用符號[x)表示超過x的最小整數(shù),如[π)=4,[-1.08)=-1,則有下列命題:
①函數(shù)f(x)=[x)-x,x∈R,則值域為(0,1];
②如果數(shù)列{an}是等差數(shù)列,n∈N*,那么數(shù)列{[an)}也是等差數(shù)列;
③若x、y∈{0,
5
2
,3,1,5,
2
3
,-
3
2
,7},則滿足方程[x)•[y)=4的有5組解;
④已知向量
a
=(x,y),
b
=([x),[y)),則<
a
,
b
>不可能為直角角.
其中,所有正確命題的序號應(yīng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果三角形的三邊a,b,c滿足b2=ac,且邊b所對的角的度數(shù)為x,試求x的范圍.

查看答案和解析>>

同步練習(xí)冊答案