12.已知實(shí)數(shù)a,b滿足$\left\{\begin{array}{l}0≤a≤4\\ 0≤b≤4\end{array}\right.$,x1,x2是函數(shù)f(x)=x2-2x+b-a+3的兩個(gè)零點(diǎn),則滿足不等式0<x1<1<x2的點(diǎn)(a,b)構(gòu)成圖形的面積是$\frac{3}{2}$.

分析 根據(jù)二次函數(shù)的零點(diǎn)分布列不等式組,得出約束條件,作出平面區(qū)域即可得出面積.

解答 解:∵0<x1<1<x2,即f(x)在(0,1)和(1,+∞)上各有1個(gè)零點(diǎn),
∴$\left\{\begin{array}{l}{f(0)>0}\\{f(1)<0}\end{array}\right.$,即$\left\{\begin{array}{l}{b-a+3>0}\\{b-a+2<0}\\{0≤a≤4}\\{0≤b≤4}\end{array}\right.$,
作出平面區(qū)域如圖所示:

∴平面區(qū)域的面積S=$\frac{1}{2}×2×2-\frac{1}{2}×1×1$=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),線性規(guī)劃的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某公司的組織結(jié)構(gòu)圖如圖所示,其中技術(shù)服務(wù)部的直接領(lǐng)導(dǎo)是( 。
A.董事長(zhǎng)B.監(jiān)事會(huì)C.總經(jīng)理D.總工程師

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.下面給出四種說(shuō)法:
①用相關(guān)指數(shù)R2來(lái)刻畫回歸效果,R2越小,說(shuō)明模型的擬合效果越好;
②命題P:“?x0∈R,x02-x0-1>0”的否定是¬P:“?x∈R,x2-x-1≤0”;
③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p,則P(-1<X<0)=$\frac{1}{2}$-p
④回歸直線一定過(guò)樣本點(diǎn)的中心($\overline{x}$,$\overline{y}$).
其中正確的說(shuō)法有②③④(請(qǐng)將你認(rèn)為正確的說(shuō)法的序號(hào)全部填寫在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在三棱錐A-BCD中,已知△ABD,△BCD都是邊長(zhǎng)為2的等邊三角形,E為BD中點(diǎn),且AE⊥平面BCD,F(xiàn)為線段AB上一動(dòng)點(diǎn),記$\frac{BF}{BA}=λ$.
(1)當(dāng)$λ=\frac{1}{3}$時(shí),求異面直線DF與BC所成角的余弦值;
(2)當(dāng)CF與平面ACD所成角的正弦值為$\frac{{\sqrt{15}}}{10}$時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.命題“?x0∈R,x02+x0+2017>0”的否定為( 。
A.?x0∈R,${x_0}^2+{x_0}+2017<0$B.?x∈R,x2+x+2017≤0
C.?x0∈R,${x_0}^2+{x_0}+2017≤0$D.?x∈R,x2+x+2017>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知$\frac{π}{4}<x<\frac{π}{2}$,設(shè)a=sinx,b=cosx,c=tanx,則( 。
A.a<b<cB.b<a<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中點(diǎn),N是CE的中點(diǎn).
(I)求證:EM⊥AD;
(II)求證:MN∥平面ADE;
(III)求點(diǎn)A到平面BCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知e是自然對(duì)數(shù)的底數(shù),函數(shù)f(x)=(ax2+x)ex,若f(x)在[-1,1]上是單調(diào)增函數(shù),則a的取值范圍是(  )
A.[-$\frac{2}{3}$,0]B.(-∞,0)∪[$\frac{2}{3}$,+∞)C.[0,$\frac{2}{3}$]D.(-∞,-$\frac{2}{3}$]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知數(shù)列{an}中,a1=-l,an+1=2an+(3n-1)•3n+1,(n∈N*),則其通項(xiàng)an=31•2n+(3n-10)•3n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案