2.在△ABC中,AB=BC=3,∠BAC=30°,CD是AB邊上的高,則$\overrightarrow{CD}•\overrightarrow{CB}$=(  )
A.$-\frac{9}{4}$B.$\frac{9}{4}$C.$\frac{27}{4}$D.$-\frac{27}{4}$

分析 利用三角形的知識計算CD,∠BCD,利用平面向量的數(shù)量積的定義計算數(shù)量積.

解答 解:∵AB=BC=3,∠BAC=30°,CD⊥AB,
∴∠ABC=120°,∠BCD=30°,
∴AC=$\sqrt{{3}^{2}+{3}^{2}-2×3×3×cos120°}$=3$\sqrt{3}$,
∴CD=ACsin∠CAB=$\frac{3\sqrt{3}}{2}$,
∴$\overrightarrow{CD}•\overrightarrow{CB}$=$\frac{3\sqrt{3}}{2}×3×cos30°$=$\frac{27}{4}$.
故選:C.

點評 本題考查了平面向量的數(shù)量積運算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示,在三棱錐PABQ中,D,C,E,F(xiàn)分別是AQ,BQ,AP,BP的中點,PD與EQ交于點G,PC與FQ交于點H,連接GH.求證:
(1)求證:AB∥GH.
(2)若三棱錐P-ABQ為正四面體,且棱長為2,求多面體ADGE-BCHF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若g(x)=2x-1,f[g(x)]=$\frac{1+{x}^{2}}{3{x}^{2}}$,則f(-3)=( 。
A.1B.$\frac{2}{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點O為AC中點,D是BC上一點,OP⊥底面ABC,BC⊥面POD.
(Ⅰ)求證:點D為BC中點;
(Ⅱ)當k取何值時,O在平面PBC內(nèi)的射影恰好是PD的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)若直線$\frac{x}{a}+\frac{y}$=1(a>0,b>0),過點(1,1),求a+b的最小值.
(2)已知函數(shù)y=$\sqrt{({m^2}-3m+2){x^2}+2(m-1)x+5}$的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.圓x2+y2=1與直線xsinθ+y-1=0的位置關系為( 。
A.相交B.相切C.相離D.相切或相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在如圖所示的多面體ABCDE中,四邊形ABCF為平行四邊形,F(xiàn)為DE的中點,△BCE為等腰直角三角形,BE為斜邊,△BDE為正三角形,CD=CE=2.
(1)證明:CD⊥BE;
(2)求四面體ABDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.數(shù)列{an}的前n項和Sn=n2-5n(n∈N*),若p-q=4,則ap-aq=(  )
A.20B.16C.12D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知直線a,b以及平面α,β,則下列命題正確的是( 。
A.若a∥α,b∥α,則a∥bB.若a∥α,b⊥α,則 a⊥b
C.若a∥b,b∥α,則a∥αD.若a⊥α,b∥β,則 α⊥β

查看答案和解析>>

同步練習冊答案