已知平面α內(nèi)有一個以AB為直徑的圓,PA⊥α,點C在圓周上(不同于A、B兩點),點D、E分別是點A在PC、PB上的射影,則(  )
A、PC⊥面ADE
B、∠ACB是二面角A-PC-B的平面角
C、BC∥面ADE
D、PB⊥面ADE
考點:空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用射影的定義、直徑所對的圓周角為直角等知識判定線線垂直,AE⊥PB,AD⊥PC,BC⊥AC.然后利用線線垂直?線面垂直?面面垂直的相互轉(zhuǎn)化關(guān)系判定即可.
解答: 解:∵PA⊥⊙O所在平面α,BC?α,
∴PA⊥BC,
∵AB是⊙O的直徑,
∴BC⊥AC,
∵PA∩AC=A,
∴BC⊥平面PAC,
∴AD⊥BC,
又∵D是點A在PC上的射影,
∴AD⊥PC,
∵BC∩PC=C,
∴AD⊥平面PBC,
∴AD⊥PB,
又∵AE⊥PB,AD∩AE=A
∴PB⊥面ADE,
故選:D
點評:本題考查空間中垂直關(guān)系的判定,要準確把握線線垂直?線面垂直?面面垂直相互轉(zhuǎn)化的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當0≤x≤1時,f(x)=x2,當x>1時,f(x+1)=f(x)+f(1),且若直線y=kx與函數(shù)y=f(x)的圖象恰有5個不同的公共點,則實數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(  )
A、5B、7C、9D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①若f(x)=2cos2
x
2
-1,則f(x+π)=f(x)對x∈R恒成立;
②要得到函數(shù)y=sin(
x
2
-
π
4
)的圖象,只需將y=sin
x
2
的圖象向右平移
π
4
個單位;
③若銳角α,β滿足cosα>sinβ,則α+β<
π
2

其中是真命題的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實數(shù)a和b,定義運算a*b,運算原理如圖所示,則式子(
1
2
)
-2
*lne2的值為( 。
A、8
B、10
C、12
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α,β,直線l,m,且有l(wèi)⊥α,m?β,則下列四個命題正確的個數(shù)為( 。
①若α∥β,則l⊥m;       ②若l∥m,則l∥β;
③若α⊥β,則l∥m;       ④若l⊥m,則l⊥β.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:a≥2,x∈R.求證:|x-1+a|+|x-a|≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的兩個函數(shù)f(x)、g(x)分別是偶函數(shù)、奇函數(shù),且f(x)+g(x)=(x+1)2,求f(x)和g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球O夾在一個銳二面角α-l-β之間,與兩個半平面分別相切于點A、B,若AB=
4
5
5
,球心O到該二面角的棱l的距離為
5
,則球O的體積為
 

查看答案和解析>>

同步練習(xí)冊答案