4.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-2,4),$\overrightarrow{c}$=(3,-3).
(1)求|$\overrightarrow{a}$-$\overrightarrow$|;
(2)設(shè)$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{c}$的夾角為θ,求θ的大。

分析 (1)利用向量的坐標(biāo)運(yùn)算以及向量的模求解即可.
(2)利用向量的數(shù)量積求解向量的夾角即可.

解答 解:$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-2,4),$\overrightarrow{c}$=(3,-3).
(1)|$\overrightarrow{a}$-$\overrightarrow$|=|(4,-3)|=$\sqrt{{4}^{2}+(-3)^{2}}$=5;
(2)$\overrightarrow{a}$+$\overrightarrow$=(0,5)與$\overrightarrow{c}$的夾角為θ,cosθ=$\frac{(\overrightarrow{a}+\overrightarrow)•\overrightarrow{c}}{|\overrightarrow{a}+\overrightarrow||\overrightarrow{c}|}$=$\frac{3×0-3×5}{5×\sqrt{{3}^{2}+(-3)^{2}}}$=$\frac{\sqrt{2}}{2}$.
∴θ=$\frac{π}{4}$.

點(diǎn)評 本題考查向量的坐標(biāo)運(yùn)算,向量的模以及數(shù)量積的運(yùn)算,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F2作垂直于F1F2的直線交橢圓于A,B兩點(diǎn),若橢圓的離心率為$\frac{\sqrt{2}}{2}$,△F1AB的面積為4$\sqrt{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)動直線l:y=kx+m與橢圓C交于P、Q兩點(diǎn),且OP⊥OQ,是否存在圓x2+y2=r2使得l恰好是該圓的切線,若存在,求出r,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.根據(jù)下列條件,分別求A∩B,A∪B:
(1)A={-1,0,1,2,3},B={-1,0,4};
(2)A={-1,0,1,2,3},B={-1,0,1;
(3)A={-1,0,1,2,3},B={-1,0,1,2,3};
(4)A={-1,0,1,2,3},B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=1-sinx的單調(diào)遞增區(qū)間為( 。
A.[2kπ,(2k+1)π]B.[2kπ+π,(2k+1)π]
C.[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$]D.[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](以上k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若A,B,C是三角形ABC的三個內(nèi)角,求證:cos2A+cos2B+cos2C+2cosAcosBcosC=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在正項等比數(shù)列{an}中,前n項和為${S_n},{a_5}=\frac{1}{2},{a_6}+{a_7}=3,則{S_5}$=$\frac{31}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知空間三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,3).設(shè)$\overrightarrow a$=$\overrightarrow{AB}$,$\overrightarrow b$=$\overrightarrow{AC}$,
(1)求$\overrightarrow a$和$\overrightarrow b$的夾角θ;
(2)若向量k$\overrightarrow a$+$\overrightarrow b$與k$\overrightarrow a$-$\overrightarrow b$互相垂直,求k的值.
(3)求|$\overrightarrow a$+3$\overrightarrow b$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)為F,短軸長為2,點(diǎn)M為橢圓E上一個動點(diǎn),且|MF|的最大值為$\sqrt{2}+1$.
(1)求橢圓E的方程;
(2)若點(diǎn)M的坐標(biāo)為$(1,\frac{{\sqrt{2}}}{2})$,點(diǎn)A,B為橢圓E上異于點(diǎn)M的不同兩點(diǎn),且直線x=1平分∠AMB,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知(x+a)2(x-1)3的展開式中,x4的系數(shù)為1,則a=2.

查看答案和解析>>

同步練習(xí)冊答案