分析 (1)由條件利用同角三角函數(shù)的基本關(guān)系求得sinα、cosα的值,可得sin2α的值.
(2)由條件利用同角三角函數(shù)的基本關(guān)系求得sin(α-β)的值,可得cosβ=cos[α-(α-β)]的值,結(jié)合β的范圍求得β的值.
解答 (1)因?yàn)?\left\{\begin{array}{l}\frac{sinα}{cosα}=4\sqrt{3}\\{sin^2}α+{cos^2}α=1\end{array}\right.$,且$0<α<\frac{π}{2}$,所以,$\left\{\begin{array}{l}sinα=\frac{{4\sqrt{3}}}{7}\\ cosα=\frac{1}{7}\end{array}\right.$,
所以,$sin2α=2sinαcosα=\frac{{8\sqrt{3}}}{49}$.
(2)因?yàn)?0<β<α<\frac{π}{2}$,所以$0<α-β<\frac{π}{2}$,又因?yàn)?cos(α-β)=\frac{13}{14}$,所以,$sin(α-β)=\frac{{3\sqrt{3}}}{14}$,
所以cosβ=cos[α-(α-β)]=$cosαcos(α-β)+sinαsin(α-β)=\frac{1}{2}$.
因?yàn)?0<β<\frac{π}{2}$,所以$β=\frac{π}{3}$.
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,2) | B. | [-2,2) | C. | (-2,2] | D. | [-2,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M-m=2 | B. | M+m=2 | C. | M-m=4 | D. | M+m=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{C}_{3}^{2}}{{C}_{50}^{2}}$ | B. | $\frac{{C}_{3}^{1}{C}_{47}^{1}}{{C}_{50}^{2}}$ | C. | $\frac{{C}_{47}^{2}}{{C}_{50}^{2}}$ | D. | 1-$\frac{{C}_{47}^{2}}{{C}_{50}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 14π | B. | 12π | C. | 10π | D. | 8π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com