12.在全班學(xué)生中,選出4名組長的不同選法有m種,選出正、副班長各一名的不同選法有n種,若m:n=13:2,則該班的學(xué)生人數(shù)是( 。
A.10B.15C.20D.22

分析 設(shè)該班學(xué)生有x人,選出4個(gè)組長有m=Cx4,選出正、副班長各一名的不同選法有n=Ax2,若m:n=13:2,列方程求得x.

解答 解:設(shè)該班學(xué)生有x人,選出4個(gè)組長有m=Cx4,選出正、副班長各一名的不同選法有n=Ax2,
若m:n=13:2,
則$\frac{{C}_{x}^{4}}{{A}_{x}^{2}}$=$\frac{13}{2}$,
∴2×$\frac{x(x-1)(x-2)(x-3)}{4×3×2×1}$=13x(x-1),
解得x=15,
故選:B.

點(diǎn)評(píng) 本題主要考查排列、組合、乘法原理概念,以及靈活應(yīng)用上述概念處理數(shù)學(xué)問題的能力.一般方法為:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=$\frac{m}{n}$

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,已知AB=2,$cosB=\frac{1}{3}$.
(Ⅰ)若BC=3,求AC的長;
(Ⅱ)若點(diǎn)D為AC中點(diǎn),且$BD=\frac{{\sqrt{17}}}{2}$,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=$\frac{{5-{{(x-3)}^2}}}{x}$(x>0)的最大值為(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知正實(shí)數(shù)a,b滿足$\frac{1}{a}$+$\frac{1}$=1,則a+b的最小值為( 。
A.1B.2C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≥3}\end{array}\right.$,則z=2x+y的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某校要求學(xué)生在高中三年級(jí)選修3門課程,其中1門人文科學(xué),2門自然科學(xué),已知某學(xué)生通過人文科學(xué)課程的概率是$\frac{4}{5}$,通過自然科學(xué)課程的概率是$\frac{3}{4}$,且各門課程通過與否相互獨(dú)立.
(Ⅰ)求該學(xué)生只通過人文科學(xué)課程但沒有通過自然科學(xué)課程的概率;
(Ⅱ)用ξ表示該學(xué)生所選的3門課程通過的門數(shù),求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+x+a(a∈R).
(1)當(dāng)a=1時(shí),解不等式f(x)≥3;
(2)若f(x)≥3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在邊長為2的正三角形ABC中,D為邊BC的中點(diǎn),E為邊AC上任意一點(diǎn),則$\overrightarrow{AD}$•$\overrightarrow{BE}$的最小值是-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),$\overrightarrow{c}$=(a,0),且$\overrightarrow{c}$⊥($\overrightarrow{m}$-$\overrightarrow{n}$),則實(shí)數(shù)a=( 。
A.1B.0或1C.3D.0或3

查看答案和解析>>

同步練習(xí)冊(cè)答案