2.極坐標(biāo)方程ρcosθ=sin2θ(θ≥0)表示的曲線是( 。
A.一個圓B.兩條射線或一個圓
C.兩條直線D.一條射線或一個圓

分析 極坐標(biāo)方程ρcosθ=sin2θ(θ≥0),即ρcosθ=2sinθcosθ,可得cosθ=0,或ρ2=2ρsinθ,化為:θ=$kπ+\frac{π}{2}$(k∈N),x2+y2=2y,即可判斷出結(jié)論.

解答 解:極坐標(biāo)方程ρcosθ=sin2θ(θ≥0),即ρcosθ=2sinθcosθ,
∴cosθ=0,或ρ=2sinθ,即ρ2=2ρsinθ,
可得:θ=$kπ+\frac{π}{2}$(k∈N),x2+y2=2y,配方為x2+(y-1)2=1.
∴極坐標(biāo)方程ρcosθ=sin2θ(θ≥0)表示的曲線是y軸或以(0,1)為圓心,1為半徑的圓.
故選:B.

點(diǎn)評 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、倍角公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1時,f(x)=x2.那么,當(dāng)1≤x≤2時,f(x)=(x-2)2;若直線y=x+a與曲線y=f(x)恰有兩個公共點(diǎn),則實數(shù)a的值是a=2k或$a=2k-\frac{1}{4}(k∈Z)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{-{x}^{2}+ax-a}{{e}^{x}}$(x>0,a∈R).
(1)求函數(shù)f(x)的極值點(diǎn);
(2)設(shè)g(x)=$\frac{f(x)+f′(x)}{x-1}$,若函數(shù)g(x)在(0,1)∪(1,+∞)內(nèi)有兩個極值點(diǎn)x1,x2,求證:g(x1)•g(x2)<$\frac{4}{{e}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,l1,l2,l3是同一平面內(nèi)的三條平行直線,l2,l3在l1的同側(cè).l1與l2的距離是d,l2與l3的距離是2d,邊長為1的正三角形ABC的三個頂點(diǎn)分別在l1,l2,l3上,則d=$\frac{{\sqrt{21}}}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù));在極坐標(biāo)系中(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸),拋物線C的極坐標(biāo)方程為ρcos2θ=sinθ.
(1)將拋物線C的極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)若直線l與拋物線C相交于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在等式cos2x=2cos2x-1(x∈R)的兩邊對x求導(dǎo),得(-sin2x)•2=4cosx(-sinx),化簡后得等式sin2x=2cosxsinx.
(1)利用上述方法,試由等式(1+x)n=Cn0+Cn1x+…+Cnn-1xn-1+Cnnxn(x∈R,正整數(shù)n≥2),
①證明:n[(1+x)n-1-1]=$\sum_{k=2}^n$k$C_n^k$xk-1;
②求C101+2C102+3C103+…+10C1010
(2)對于正整數(shù)n≥3,求 $\sum_{k=1}^n$(-1)kk(k+1)Cnk

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a,b∈(0,+∞),函數(shù)y=loga(x-2b)的圖象過點(diǎn)(2,1),則$\frac{2}{a}$+$\frac{4}$的最小值是( 。
A.3B.6C.9D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.平面直角坐標(biāo)系中有A(0,1),B(2,1),C(3,4),D(-1,2)兩點(diǎn)
(1)求證:A,B,C,D四點(diǎn)共面;
(2)記(1)中的圓的圓心為M,直線l:2x-y-2=0與圓M相交于點(diǎn)P、Q,求弦長PQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若二面角α-l-β的平面角為θ,a,β的法向量分別為$\overrightarrow{m}$,$\overrightarrow{n}$,則cosθ等于(  )
A.$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$B.$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}•\overrightarrow{n}|}$C.-$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$D.以上都不對

查看答案和解析>>

同步練習(xí)冊答案