已知數(shù)列{an}中,a1=1,且an+1=
2an
2+an
,n∈N+
(1)求a1,a2,a3的值;
(2)歸納數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.
考點(diǎn):數(shù)學(xué)歸納法
專題:綜合題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)由a1=1,且an+1=
2an
2+an
,代入計(jì)算,可得a1,a2,a3的值;
(2)由(1)猜想猜想它的通項(xiàng)公式,再利用數(shù)學(xué)歸納法的證題步驟進(jìn)行證明.
解答: 解:(1)∵a1=1,且an+1=
2an
2+an
,
∴a1=1,a2=
2
3
,a3=
1
2

(2)由(1)猜想an=
2
n+1

下面用數(shù)學(xué)歸納法證明之,
①當(dāng)n=1時(shí),a1=1,結(jié)論成立;
②假設(shè)n=k(k≥1)時(shí),結(jié)論成立,即ak=
2
k+1
,則
n=k+1時(shí),ak+1=
2ak
2+ak
=
4
k+1
2+
2
k+1
=
2
(k+1)+1

所以當(dāng)n=k+1等式成立
根據(jù)①②得an=
2
n+1
成立.
點(diǎn)評(píng):此題主要考查歸納法的證明,歸納法一般三個(gè)步驟:(1)驗(yàn)證n=1成立;(2)假設(shè)n=k成立;(3)利用已知條件證明n=k+1也成立,從而求證,這是數(shù)列的通項(xiàng)一種常用求解的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:萬(wàn)元)之間有下表關(guān)系
x 2 4 5 6 8
y 30 40 60 50 70
y與x的線性回歸方程為
y
=6.5x+a,當(dāng)廣告支出是3萬(wàn)元時(shí),則銷售額大約為( 。
A、36B、37C、39D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,BC=
2
,AC=1,以AB為邊作等腰直角三角形ABD(B為直角頂點(diǎn),C、D兩點(diǎn)在直線AB的兩側(cè)).當(dāng)∠C變化時(shí),線段CD長(zhǎng)的最大值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點(diǎn)E在棱PB上.
(1)求證:平面AEC⊥平面PDB;
(2)當(dāng)PD=
2
AB=2,且VA-PED=
1
3
時(shí),確定點(diǎn)E的位置,即求出
PE
EB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,圓O1和圓O2的半徑都等于1,|O1O2|=6,過(guò)動(dòng)點(diǎn)P分別作圓O1、圓O2的切線PM、PN(M、N分別為切點(diǎn)),使得|PM|=
3
|PN|.試建立平面直角坐標(biāo)系,并求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=9x+
a2
x
+7,若f(x)≥a+1對(duì)一切x≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,復(fù)數(shù)z=
m(m-2)
m-1
+(m2+2m-3)i,求當(dāng)m為何值時(shí):
(1)z∈R;                       
(2)z是純虛數(shù);
(3)z的對(duì)應(yīng)點(diǎn)在直線x+y+3=0上;
(4)z的對(duì)應(yīng)點(diǎn)位于復(fù)平面的第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,求數(shù)列{an}的通項(xiàng)公式及其前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于給定的數(shù)列{cn},如果存在實(shí)常數(shù)p、q,使得cn+1=pcn+q對(duì)于任意n∈N*都成立,我們稱數(shù)列{cn}是“優(yōu)美數(shù)列”.
(1)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“優(yōu)美數(shù)列”?若是,指出它對(duì)應(yīng)的實(shí)常數(shù)p、q,若不是,請(qǐng)說(shuō)明理由;
(2)已知數(shù)列{an}滿足a1=2,an+an+1=3•2n(n∈N*).若數(shù)列{an}是“優(yōu)美數(shù)列”,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案