求z=3x-2y的最大值和最小值,式中的x、y滿足條件
4x-5y+21≥0
x-3y+7≤0
2x+y-7≤0
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可得到結(jié)論.
解答: 解:作出可行域如圖:作一組與3x-2y=0平行的直線l,當l過C時,z最大,過B時,z最小,
4x-5y+21=0
x-3y+7=0
,解得
x=-4
y=1
,即B(-4,1),
x-3y+7=0
2x+y-7=0
,解得
x=2
y=3
,即C(2,3),
則zmax=3×2-2×3=0,zmin=3×(-4)-2×1=-14,
點評:本題主要考查線性規(guī)劃的應用,利用圖象平行求得目標函數(shù)的最大值和最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

l1與l2之間是兩條異面直線,AD∈l1,BC∈l2,若l1與l2成60°,且AB=CD=a,AD=BC=b,求異面直線AB與CD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中有1個白球和4個黑球,且球的大小、形狀都相同.每次從其中任取一個球,若取到白球則結(jié)束,否則,繼續(xù)取球,但取球總次數(shù)不超過k次(k≥5).
(Ⅰ)當每次取出的黑球不再放回時,求取球次數(shù)ξ的數(shù)學期望與方差;
(Ⅱ)當每次取出的黑球仍放回去時,求取球次數(shù)η的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點P(a,0)的直線l與圓(x-1)2+(y-3)2=4相交于A、B兩點,存在PA=AB,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知當x∈R時,不等式a+cos2x<5-4sinx+
5a-4
恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},a1=2,an=an-12,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={-1,1},B={x|x2-2ax+b=0},若B≠∅且B?A,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在由1、2、3、4、5五個數(shù)字組成的沒有重復數(shù)字的四位數(shù)中,
(1)1不在百位且2不在十位的有多少個;
(2)計算所有偶數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩名工人加工同一種零件,兩人每天加工的零件數(shù)相等,所得次品數(shù)分別為ε、η,ε和η的分布列如下:
ε012η012
P
6
10
1
10
3
10
P
5
10
3
10
2
10
試對這兩名工人的技術水平進行比較(即分別求出兩工人生產(chǎn)出次品數(shù)ε的期望和方差分別).

查看答案和解析>>

同步練習冊答案