(2013•寶山區(qū)一模)已知半徑為R的球的球面上有三個點,其中任意兩點間的球面距離都等于
πR
3
,且經(jīng)過這三個點的小圓周長為4π,則R=
2
3
2
3
分析:根據(jù)球面上三個點,其中任意兩點間的球面距離都等于
πR
3
,得出AB=BC=CA=R,利用其周長得到正三角形ABC的外接圓半徑r=2,故可以得到高,設(shè)D是BC的中點,在△OBC中,又可以得到角以及邊與R的關(guān)系,在Rt△ABD中,再利用直角三角形的勾股定理,即可解出R.
解答:解:∵球面上三個點,其中任意兩點間的球面距離都等于
πR
3
,
∴∠ABC=∠BCA=∠CAB=
π
3
,
∴AB=BC=CA=R,設(shè)球心為O,
因為正三角形ABC的外徑r=2,故高AD=
3
2
r=3,D是BC的中點.
在△OBC中,BO=CO=R,∠BOC=
π
3
,
所以BC=BO=R,BD=
1
2
BC=
1
2
R.
在Rt△ABD中,AB=BC=R,所以由AB2=BD2+AD2,得R2=
1
4
R2+9,所以R=2
3

故答案為:2
3
點評:本題考查對球的性質(zhì)認識及利用,以及學(xué)生的空間想象能力,是中檔題.解題時要認真審題,注意合理地進行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)已知定義域為R的二次函數(shù)f(x)的最小值為0且有f(1+x)=f(1-x),直線g(x)=4(x-1)被f(x)的圖象截得的弦長為4
17
,數(shù)列{an}滿足,(an+1-an)g(an)+f(an)=0(n∈N*).
(1)函數(shù)f(x);
(2)求數(shù)列{an}的通項公式;
(3)設(shè)bn=3f(an)-g(an+1),求數(shù)列{bn}的最值及相應(yīng)的n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)已知f(x)=
x+1 ,x∈[-1,0)
x2+1   ,x∈[0,1]
,則下列四圖中所作函數(shù)的圖象錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)函數(shù)f(x)=x|arcsinx+a|+barccosx是奇函數(shù)的充要條件是 ( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)已知函數(shù)f(x)=log2(4x+b•2x+4),g(x)=x.
(1)當b=-5時,求f(x)的定義域;
(2)若f(x)>g(x)恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)設(shè)拋物線C:y2=2px(p>0)的焦點為F,經(jīng)過點F的直線與拋物線交于A、B兩點.
(1)若p=2,求線段AF中點M的軌跡方程;
(2)若直線AB的方向向量為
n
=(1,2)
,當焦點為F(
1
2
,0)
時,求△OAB的面積;
(3)若M是拋物線C準線上的點,求證:直線MA、MF、MB的斜率成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案