【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.
(1)分別寫出曲線和曲線
的極坐標(biāo)方程;
(2)P為曲線上的任意一點(diǎn),過P向曲線
引兩條切線PA、PB,當(dāng)
最大時(shí),求P點(diǎn)的極坐標(biāo).
【答案】(1);
;(2)
【解析】
(1)消除參數(shù)后即可求得直角坐標(biāo)方程,再根據(jù)極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式即可得解;
(2)由題意當(dāng)時(shí),
最大,設(shè)點(diǎn)
的極坐標(biāo)為
,P的極坐標(biāo)為
,再利用
即可得解.
(1)由曲線的參數(shù)方程消參得
即
,
曲線
的極坐標(biāo)方程為:
;
由直線的參數(shù)方程可得直線
過原點(diǎn)且傾斜角為
,
則曲線的極坐標(biāo)方程為:
.
(2)曲線是以點(diǎn)
為圓心,半徑為1的圓,直線
過原點(diǎn)且傾斜角為
,
如圖,當(dāng)取最小值即
時(shí),
最大,
設(shè)點(diǎn)的極坐標(biāo)為
,P的極坐標(biāo)為
,其中
,
則,
,
當(dāng)時(shí),
,
所以P點(diǎn)的極坐標(biāo)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn是正項(xiàng)數(shù)列{an}的前n項(xiàng)和,且滿足a1=4,6Sn=an2+3an+λ(n∈N*,λ∈R),設(shè)bn=(n﹣μ)an,若b2是數(shù)列{bn}中唯一的最小項(xiàng),則實(shí)數(shù)μ的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)水輪的半徑為,水輪軸心
距離水面的高度為
,已知水輪按逆時(shí)針勻速轉(zhuǎn)動(dòng),每分鐘轉(zhuǎn)動(dòng)
圈,當(dāng)水輪上點(diǎn)
從水中浮現(xiàn)時(shí)的起始(圖中點(diǎn)
)開始計(jì)時(shí),記
為點(diǎn)
距離水面的高度關(guān)于時(shí)間
的函數(shù),則下列結(jié)論正確的是( )
A.
B.
C.若,則
D.不論為何值,
是定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足
.
(1)證明:數(shù)列為等差數(shù)列;
(2)設(shè)數(shù)列的前n項(xiàng)和為
,若
,且對任意的正整數(shù)n,都有
,求整數(shù)
的值;
(3)設(shè)數(shù)列滿足
,若
,且存在正整數(shù)s,t,使得
是整數(shù),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)統(tǒng)計(jì)案例如下:
①為了探究患慢性支氣管炎與吸煙關(guān)系,調(diào)查了339名50歲以上的人,調(diào)查結(jié)果如表:
②為了解某地母親與女兒身高的關(guān)系,隨機(jī)測得10對母女的身高如下表:
則對這些數(shù)據(jù)的處理所應(yīng)用的統(tǒng)計(jì)方法是( )
A.①回歸分析②取平均值
B.①獨(dú)立性檢驗(yàn)②回歸分析
C.①回歸分析②獨(dú)立性檢驗(yàn)
D.①獨(dú)立性檢驗(yàn)②取平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 是邊長為3的正方形,
平面
與平面
所成角為
.
(Ⅰ)求證: 平面
;
(Ⅱ)設(shè)點(diǎn)是線段
上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)
的位置,使得
平面
,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個(gè)倉庫設(shè)計(jì)由上部屋頂和下部主體兩部分組成,屋頂?shù)男螤钍撬睦忮F,四邊形
是正方形,點(diǎn)
為正方形
的中心,
平面
;下部的形狀是長方體
.已知上部屋頂造價(jià)與屋頂面積成正比,比例系數(shù)為
,下部主體造價(jià)與高度成正比,比例系數(shù)為
.若欲造一個(gè)上、下總高度為10
,
的倉庫,則當(dāng)總造價(jià)最低時(shí),
( )
A.B.
C.4
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α是給定的平面,A,B是不在α內(nèi)的任意兩點(diǎn),則( )
A.在α內(nèi)存在直線與直線AB異面
B.在α內(nèi)存在直線與直線AB相交
C.在α內(nèi)存在直線與直線AB平行
D.存在過直線AB的平面與α垂直
E.存在過直線AB的平面與α平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠,
兩條相互獨(dú)立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知
,
生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為
和
.
(1)從,
生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于
,求
的最小值
.
(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為
的值.
①已知,
生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回?fù)p失
元和
元。若從兩條生產(chǎn)線上各隨機(jī)抽檢
件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計(jì)哪條生產(chǎn)線挽回的損失較多?
②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級分類后,每件分別獲利元、
元、
元,現(xiàn)從
,
生產(chǎn)線的最終合格品中各隨機(jī)抽取
件進(jìn)行檢測,結(jié)果統(tǒng)計(jì)如下圖;用樣本的頻率分布估計(jì)總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為
,求
的分布列并估算該廠產(chǎn)量
件時(shí)利潤的期望值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com