在△ABC中,若a:b:c=1:3:5,求
2sinA-sinB
sinC
的值.
考點:正弦定理
專題:解三角形
分析:由三邊之比設出a,b,c,利用正弦定理化簡原式后,將設出的三邊代入計算即可求出值.
解答: 解:∵在△ABC中,a:b:c=1:3:5,
∴設a=k,b=3k,c=5k,
由正弦定理
a
sinA
=
b
sinB
=
c
sinC
=2R,即sinA=
a
2R
,sinB=
b
2R
,sinC=
C
2R
,
則原式=
2a
2R
-
b
2R
c
2R
=
2a-b
c
=
2k-3k
5k
=-
1
5
點評:此題考查了正弦定理,熟練掌握正弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

復數(shù)設i為虛數(shù)單位,則
5-i
1+i
=( 。
A、-2-3iB、-2+3i
C、2-3iD、2+3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A、B、C、D、E五人并排站成一排.
(1)如果B、C排在一起,那么不同的排法共有多少種?
(2)如果B、C不相鄰,那么不同的排法共有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg(2sinxcosx),
(1)求它的定義域;
(2)判斷該函數(shù)是否具有奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式mx2-2x-3≤0的解集為(-1,n),
(1)求m+2n的值;
(2)(文科做)解關于x的不等式:x2+(a-n)x-3ma>0(a∈R)
(2)(理科做)解關于x的不等式:ax2+n+1>(m+1)x+2ax(a<2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
m
=(-x+lnx,1),
n
=(a,-3)(a∈R且a≠0),函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的斜率為l,問:m在什么范圍取值時,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2[
m
2
+f′(x)]在區(qū)間(t,3)上總存在極值?
(3)當a=2時,設函數(shù)h(x)=(p-2)x-
p+2e
x
-3,若在區(qū)間[1,e]上至少存在一個x0,使得h(x0)>f(x0)成立,試求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin(-2x+
π
3
).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)當y取最小值時x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-(c+1)x+c(c∈R).
(1)解關于x的不等式f(x)<0;
(2)當c=-2時,不等式f(x)>ax-5在(0,2)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.如圖是根據(jù)調(diào)查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖; 將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”
 非體育迷體育迷合計
   
 1055
合計   
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你能否在犯錯誤的概率不超過0.10的前提下認為“體育迷”與性別有關?
(2)求從三個“體育迷”和兩個“非體育迷”中任取三個人,其中恰有兩個體育迷的概率.
p(K2≥k00.100.050.010
k02.7063.8416.635
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d為樣本容量).

查看答案和解析>>

同步練習冊答案