15.設(shè)復(fù)數(shù)z=$\frac{2-i}{1+i}$,則z的共軛復(fù)數(shù)為$\frac{1}{2}+\frac{3}{2}i$.

分析 利用復(fù)數(shù)代數(shù)形式的乘除運算化簡求得z,再由共軛復(fù)數(shù)的概念得答案.

解答 解:∵z=$\frac{2-i}{1+i}=\frac{(2-i)(1-i)}{(1+i)(1-i)}=\frac{1-3i}{2}$=$\frac{1}{2}$-$\frac{3}{2}$i.
∴$\overline{z}$=$\frac{1}{2}$+$\frac{3}{2}$i.
故答案為:$\frac{1}{2}+\frac{3}{2}i$.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.為考察數(shù)學(xué)成績與物理成績的關(guān)系,在高二隨機抽取了300名學(xué)生.得到下面列聯(lián)表:
數(shù)學(xué)
物理
85~100分85分以下合計
85~100分3785122
85分以下35143178
合計72228300
現(xiàn)判斷數(shù)學(xué)成績與物理成績有關(guān)系,則判斷的出錯率為( 。
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
A.0.5%B.1%C.2%D.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若ABCD為平行四邊形ABCD,E是CD中點,且$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b$,則$\overrightarrow{AE}$=(  )
A.$\frac{1}{2}\overrightarrow a+\overrightarrow b$B.-$\frac{1}{2}\overrightarrow a+\overrightarrow b$C.$\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如果α的終邊過點(2sin30°,-2cos30°),那么sinα=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知復(fù)數(shù)z=1+i(i為虛數(shù)單位),a、b∈R,
(Ⅰ)若$ω={z^2}+3\overline z-4$,求|ω|;
(Ⅱ)若$\frac{{{z^2}+az+b}}{{{z^2}-z+1}}=1-i$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知等比數(shù)列a1+a4=18,a2a3=32,則公比q的值為( 。
A.2B.$\frac{1}{2}$C.$\frac{1}{2}$或2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知 (a+b+c)(a+b-c)=3ab
(1)求角C;
(2)若邊c=2,S△ABC=$\frac{{\sqrt{3}}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.橢圓$\frac{x^2}{12}+\frac{y^2}{3}=1$的左、右焦點分別為F1、F2,點P在橢圓上,且點P的橫坐標(biāo)為3,則|PF1|是|PF2|的( 。
A.7倍B.5倍C.4倍D.3倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若|$\overrightarrow{a}$$+\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2|$\overrightarrow{a}$|,則向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊答案