設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)為f′(x),且f′(x)是偶函數(shù),則曲線:y=f(x)在點(diǎn)(2,f(2))處的切線方程為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:先由求導(dǎo)公式求出f′(x),根據(jù)偶函數(shù)的性質(zhì),可得f′(-x)=f′(x),從而求出a的值,然后利用導(dǎo)數(shù)的幾何意義求出切線的斜率,進(jìn)而寫出切線方程.
解答: 解:∵f(x)=x3+ax2+(a-3)x,
∴f′(x)=3x2+2ax+(a-3),
∵f′(x)是偶函數(shù),
∴3(-x)2+2a(-x)+(a-3)=3x2+2ax+(a-3),
解得a=0,
∴f(x)=x3-3x,f′(x)=3x2-3,則f(2)=2,k=f′(2)=9,
即切點(diǎn)為(2,2),切線的斜率為9,
∴切線方程為y-2=9(x-2),即9x-y-16=0.
故答案為:9x-y-16=0.
點(diǎn)評:本題主要考查求導(dǎo)公式,偶函數(shù)的性質(zhì)以及導(dǎo)數(shù)的幾何意義,同時(shí)考查了運(yùn)算求解的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若k∈R,若方程
x2
k+3
+
y2
k+2
=1表示雙曲線,則k的范圍是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
是單位向量,
a
b
=0.若向量
c
滿足|
c
-
a
-
b
|=1,則|
c
|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d,定義y=f″(x)是函數(shù)y=f′(x)的導(dǎo)函數(shù).若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn):任何一個(gè)三次函數(shù)既有拐點(diǎn),又有對稱中心,且拐點(diǎn)就是對稱中心.根據(jù)這一發(fā)現(xiàn),對于函數(shù)g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,則g(
1
2013
)+g(
2
2013
)+f(
3
2013
)+…+g(
2012
2013
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2x , x<0
x2-2x , x≥0
,若f(-a)≤0,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,AB=4
3
,AC=2
3
,AD為BC邊上的中線,且∠BAD=30°,則BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在243和3中間插入3個(gè)數(shù),使這5個(gè)數(shù)成等比數(shù)列,則這三個(gè)數(shù)中最中間的那個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
滿足|
a
+
b
|=4,則
a
b
的最大值為( 。
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式化簡后的結(jié)果為cosx的是( 。
A、sin(x-
π
2
B、sin(π+x)
C、sin(x+
π
2
D、sin(π-x)

查看答案和解析>>

同步練習(xí)冊答案