3.以下說法錯誤的是(  )
A.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B.“x=-1”是“x2-5x-6=0”的根的逆命題為假命題
C.若p∧q為假命題,則p、q均為假命題
D.若命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,則x2+x+1≥0

分析 寫出原命題的逆否命題,可判斷A,求出方程的解,判斷B,根據(jù)復(fù)合命題真假判斷的真值表,可判斷C,根據(jù)命題的否定,判斷D.

解答 解:命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”,故A正確;
“x=-1”是“x2-5x-6=0”的根,而“x2-5x-6=0”的根是“x=-1或x=6為假命題,故B正確;
若p∧q為假命題,則p,q存在至少一個假命題,但不一定均為假命題,故C錯誤;
若命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,則x2+x+1≥0,故D正確;
故選:C.

點評 本題考查的知識點是命題的真假判斷與應(yīng)用,四種命題,復(fù)合命題,充要條件,特稱命題等知識點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若z=2+i,則$\frac{4i}{z\overline z-1}$=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校高二年級共有學(xué)生1000名,其中走讀生750名,住宿生250名,現(xiàn)采用分層抽樣的方法從該年級抽取100名學(xué)生進(jìn)行問卷調(diào)查.根據(jù)問卷取得了這100名學(xué)生每天晚上有效學(xué)習(xí)時間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組:①[0,30),②[30,60),③[60,90),④[90,120),…得到頻率分布直方圖(部分)如圖.

(Ⅰ)如果把“學(xué)生晚上有效時間達(dá)到兩小時”作為是否充分利用時間的標(biāo)準(zhǔn),對抽取的100名學(xué)生,完成下列2×2列聯(lián)表;并判斷是否有95%的把握認(rèn)為學(xué)生利用時間是否充分與走讀、住宿有關(guān)?
利用時間充分利用時間不充分總計
走讀生50
住宿生10
總計60100
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
參考列表:

P(K2≥k0
0.500.400.250.150.100.050.025

k0
0.4550.7081.3232.0722.7063.8415.024
(Ⅱ)若在第①組、第②組、第③組中共抽出3人調(diào)查影響有效利用時間的原因,記抽到“有效學(xué)習(xí)時間少于60分鐘”的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.當(dāng)m=5,n=6時,運(yùn)行如下所示的程序框圖,程序結(jié)束時,判斷框被執(zhí)行的次數(shù)為(  )
A.1B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知O是△ABC的外心,且AB=5,AC=8,存在非零實數(shù)x,y使$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$且x+2y=1,則cos∠BAC=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.分類變量x和y的列聯(lián)表如下,則(  )
y1y2總計
x1aba+b
x2cdc+d
總計a+cb+da+b+c+d
A.ad-bc越小,說明x與y的關(guān)系越弱B.ad-bc越大,說明x與y的關(guān)系越弱
C.(ad-bc)2越大,說明x與y的關(guān)系越強(qiáng)D.(ad-bc)2越小,說明x與y的關(guān)系越強(qiáng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)m,n分別是先后拋擲兩枚骰子所得的點數(shù),則在先后兩次出現(xiàn)的點數(shù)中有4的條件下,使方程x2+mx+n=0有兩個不相等實根的概率為$\frac{5}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=(x2+ax+a)e-x(a<2,a∈R).
(1)討論f(x)的單調(diào)性,并求出極值;
(2)是否存在實數(shù)a,使f(x)的極大值為3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)f(x)=ex-kx2+(k-e)x有三個不同的零點,則實數(shù)k的取值范圍是( 。
A.(e,+∞)B.(0,e)C.[1,e)D.(0,+∞)

查看答案和解析>>

同步練習(xí)冊答案