已知2f(x)+f(數(shù)學公式)=-數(shù)學公式(x≠0),則下列說法正確的是


  1. A.
    f(x)為奇函數(shù)且在(-∞,0)上為增函數(shù)
  2. B.
    f(x)為奇函數(shù)且在(-∞,0)上為減函數(shù)
  3. C.
    f(x)為偶函數(shù)且在(-∞,0)上為增函數(shù)
  4. D.
    f(x)為偶函數(shù)且在(-∞,0)上為減函數(shù)
A
分析:使用方程組法,可以求出函數(shù)f(x)的解析式,進而根據(jù)函數(shù)奇偶性的定義和函數(shù)單調(diào)性的性質(zhì),判斷出函數(shù)的奇偶性和單調(diào)性可得答案.
解答:∵2f(x)+f()=-…①
∴2f()+f(x)=-3x…②
①×2-②得
3f(x)=+3x
∴f(x)=+x
易得在x≠0時,f(-x)=-f(x)恒成立,故函數(shù)為奇函數(shù)
又∵在(-∞,0)上y=為增函數(shù),y=x也為增函數(shù)
∴f(x)=+x在(-∞,0)上為增函數(shù)
故選A
點評:本題考查的知識點是函數(shù)奇偶性的判斷,函數(shù)解析的求法,函數(shù)單調(diào)性的性質(zhì),其中利用方程組法求出函數(shù)的解析式是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知2f(x)+f(
1
x
)=-
3
x
(x≠0),則下列說法正確的為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知2f(x)+f(
1
x
)=-
3
x
(x≠0),則下列說法正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省洛陽市高三(上)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

已知2f(x)+f()=(x≠0),則下列說法正確的為( )
A.f(x)為奇函數(shù)且在(0,+∞)上為增函數(shù)
B.f(x)為奇函數(shù)且在(0,+∞)上為減函數(shù)
C.f(x)為偶函數(shù)且在(0,+∞)上為增函數(shù)
D.f(x)為偶函數(shù)且在(0,+∞)上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省洛陽市高三(上)期中數(shù)學試卷(理科)(解析版) 題型:選擇題

已知2f(x)+f()=-(x≠0),則下列說法正確的是( )
A.f(x)為奇函數(shù)且在(-∞,0)上為增函數(shù)
B.f(x)為奇函數(shù)且在(-∞,0)上為減函數(shù)
C.f(x)為偶函數(shù)且在(-∞,0)上為增函數(shù)
D.f(x)為偶函數(shù)且在(-∞,0)上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省洛陽市高三(上)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

已知2f(x)+f()=(x≠0),則下列說法正確的為( )
A.f(x)為奇函數(shù)且在(0,+∞)上為增函數(shù)
B.f(x)為奇函數(shù)且在(0,+∞)上為減函數(shù)
C.f(x)為偶函數(shù)且在(0,+∞)上為增函數(shù)
D.f(x)為偶函數(shù)且在(0,+∞)上為減函數(shù)

查看答案和解析>>

同步練習冊答案