11.已知幾何體A-BCED[如圖(1)]的三視圖如圖(2)所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形,已知幾何體A-BCED的體積為16.

(1)求實(shí)數(shù)a的值;
(2)將直角三角形ABD繞斜邊AD所在直線旋轉(zhuǎn)一周,求該旋轉(zhuǎn)體的表面積.

分析 (1)由該幾何體的三視圖知AC⊥面BCED,且EC=BC=AC=4,BD=a,利用幾何體A-BCED的體積為16,求實(shí)數(shù)a的值;
(2)過B作AD的垂線BH,垂足為H,得BH=$\frac{4\sqrt{2}}{3}$,求出圓錐底面周長(zhǎng),兩個(gè)圓錐的母線長(zhǎng),即可求該旋轉(zhuǎn)體的表面積.

解答 解:(1)由該幾何體的三視圖知AC⊥面BCED,且EC=BC=AC=4,BD=a,
體積V=$\frac{1}{3}•4•\frac{(a+4)×4}{2}$=16,
解得a=2;
(2)在RT△ABD中,AB=4$\sqrt{2}$,BD=2,AD=6,
過B作AD的垂線BH,垂足為H,得BH=$\frac{4\sqrt{2}}{3}$,
該旋轉(zhuǎn)體由兩個(gè)同底的圓錐構(gòu)成,圓錐底面半徑為BH=$\frac{4\sqrt{2}}{3}$,
所以圓錐底面周長(zhǎng)為C=2π•B$\frac{4\sqrt{2}}{3}$=$\frac{8\sqrt{2}π}{3}$,兩個(gè)圓錐的母線長(zhǎng)分別為4$\sqrt{2}$,2,
故該旋轉(zhuǎn)體的表面積為$S=\frac{1}{2}×\frac{8\sqrt{2}π}{3}×(2+4\sqrt{2})$=$\frac{(32+8\sqrt{2})π}{3}$.

點(diǎn)評(píng) 本題考查了圓錐的側(cè)面積公式、積體公式和解三角形等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)=ax-1,g(x)=bx-1(a,b>0),記h(x)=f(x)-g(x)
(1)若h(2)=2,h(3)=12,當(dāng)x∈[1,3]時(shí),求h(x)的最大值
(2)a=2,b=1,且方程$|{h(x)}|=t({0<t<\frac{1}{2}})$有兩個(gè)不相等實(shí)根m,n,求mn的取值范圍
(3)若a=2,h(x)=cx-1(x>1,c>0),且a,b,c是三角形的三邊長(zhǎng),求出x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式3x+2y-6≥0表示的平面區(qū)域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)數(shù)集M=$\{x\left|{m≤x≤m+\frac{7}{10}}\right.\}$,N=$\{x\left|{n-\frac{2}{5}≤x≤n}\right.\}$且集合M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“長(zhǎng)度”,那么集合M∩N的“長(zhǎng)度”的最小值是$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列四個(gè)結(jié)論正確的是(  )
A.lg2•lg3=lg5B.若sinθ=$\frac{1}{2}$,則θ=30°
C.$\root{n}{{a}^{n}}$=aD.logax-logay=loga$\frac{x}{y}$(x>0,y>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.$z=\frac{2}{1+i}$(i為虛數(shù)單位),則(  )
A.z的實(shí)部為2B.z的虛部為iC.$\overline z=1+i$D.|z|=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知向量$\overrightarrow m=(cosx\;,\;-1)$,$\overrightarrow n=(\sqrt{3}sinx\;,\;{cos^2}x)$,設(shè)函數(shù)$f(x)=\overrightarrow m\;•\;\overrightarrow n$
(1)求f(x)在區(qū)間[0,π]上的零點(diǎn)
(2)若銳角△ABC,a=2,$f(A)=\frac{1}{2}$,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合$A=\{x|\frac{x-1}{x+2}≤0\},B=\{x|y=lg(-{x^2}+4x+5)\}$,則A∩(∁RB)=(  )
A.(-2,-1]B.[-2,-1]C.(-1,1]D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中在區(qū)間[-1,+∞)上為增函數(shù)的是(  )
A.y=$\sqrt{x+1}$B.y=(x-1)2C.y=|x-2|D.y=-x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案