A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,1) | D. | (1,+∞) |
分析 由y=f(x)的奇偶性、單調(diào)性可得f(x)的圖象的對稱性及單調(diào)性,由此可把不等式化為具體不等式求解.
解答 解:∵f(x)+f(-x)=0,
∴y=f(x)是奇函數(shù),f(0)=0,
∵y=f(x)是減函數(shù),
∴f(1-x)<0,即f(1-x)<f(0),
由f(x)遞減,得1-x>0,解得x<1,
∴f(1-x)<0的解集為(-∞,1),
故選:C.
點(diǎn)評 本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,考查抽象不等式的求解,考查轉(zhuǎn)化思想,靈活運(yùn)用函數(shù)性質(zhì)去掉不等式中的符號“f”是解題的關(guān)鍵所在.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=$\frac{n}{2n+1}$(n∈N+) | B. | an=$\frac{n}{2n-1}$(n∈N+) | C. | an=$\frac{n}{2n+3}$(n∈N+) | D. | an=$\frac{n}{2n-3}$(n∈N+) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,e4) | D. | (e4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\frac{{\sqrt{10}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com