4.已知正方體ABCD-A1B1C1D1的棱長為1,點E是線段B1C的中點,則三棱錐A-DED1外接球體積為$\frac{9π}{16}$.

分析 三棱錐A-DED1外接球為四棱錐E-A1D1DA外接球,利用勾股定理建立方程,求出球的半徑,即可求出三棱錐A-DED1外接球體.

解答 解:三棱錐A-DED1外接球為四棱錐E-A1D1DA外接球,
設(shè)球的半徑為R,則R2=($\frac{\sqrt{2}}{2}$)2+(1-R)2,∴R=$\frac{3}{4}$,
∴三棱錐A-DED1外接球體積為$\frac{4}{3}π•(\frac{3}{4})^{3}$=$\frac{9π}{16}$.
故答案為:$\frac{9π}{16}$.

點評 本題考查三棱錐A-DED1外接球體,考查學生的計算能力,求出球的半徑是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知在三棱錐P-ABC中,VP-ABC=$\frac{{4\sqrt{3}}}{3}$,∠APC=$\frac{π}{4}$,∠BPC=$\frac{π}{3}$,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱錐P-ABC外接球的體積為( 。
A.$\frac{4π}{3}$B.$\frac{{8\sqrt{2}π}}{3}$C.$\frac{{12\sqrt{3}π}}{3}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.下列函數(shù)中,①y=|x+$\frac{1}{x}$|;②y=$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$;③y=log2x+logx2(x>0且≠1);④y=3x+3-x;最小值為2的函數(shù)是①②④(只填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若雙曲線$\frac{y^2}{a^2}$-$\frac{x^2}{b^2}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{{\sqrt{3}}}{3}$x,則該雙曲線的離心率為( 。
A.$\sqrt{3}$B.3C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在某次聯(lián)考測試中,學生數(shù)學成績X~N(100,σ2)(σ>0),若P(80<X<120)=0.8,則P(0<X<80)等于( 。
A.0.05B.0.1C.0.15D.0.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知某中學高三文科班學生共有800人參加了數(shù)學與地理的水平測試,學校決定利用隨機數(shù)表法從中抽取100人進行成績抽樣調(diào)查,先將800人按001,002,…,800進行編號;
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的數(shù)學與地理的水平測試成績?nèi)绫恚?br />成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學成績,例如:表中數(shù)學成績?yōu)榱己玫墓灿?0+18+4=42.
人數(shù)數(shù)學
優(yōu)秀良好及格

地理
優(yōu)秀7205
良好9186
及格a4b
①若在該樣本中,數(shù)學成績優(yōu)秀率是30%,求a,b的值:
②在地理成績及格的學生中,已知a≥10,b≥8,求數(shù)學成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=cos(2x+$\frac{π}{3}$)-cos2x,其中x∈R,給出下列四個結(jié)論:
①函數(shù)f(x)是最小正周期為π的奇函數(shù);
②函數(shù)f(x)圖象的一條對稱軸是直線x=$\frac{2π}{3}$;
③函數(shù)f(x)圖象的一個對稱中心為($\frac{5π}{12}$,0);
④函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
其中正確的結(jié)論序號②③④  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在△ABC中,內(nèi)角A,B,C所對的邊長分別為a,b,c且滿足$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$,若B=$\frac{π}{6}$,BC邊上中線AM=$\sqrt{7}$,則△ABC的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知單位向量$\vec a$,$\vec b$,$\vec c$,且$\vec a$⊥$\vec b$,若$\vec c$=t$\vec a$+(1-t)$\vec b$,則實數(shù)t的值為1或0.

查看答案和解析>>

同步練習冊答案