分析 對稱軸分為是x軸和y軸兩種情況,分別設出標準方程為y2=-2px和x2=2py,然后將M點坐標代入即可求出拋物線標準方程.
解答 解:(1)拋物線的頂點在坐標原點,對稱軸是x軸,并且經過點P(-2,2$\sqrt{2}$),
設它的標準方程為y2=-2px(p>0)
∴8=4p,解得p=2,
∴y2=2x.
(2)拋物線的頂點在坐標原點,對稱軸是y軸,并且經過點P(-2,2$\sqrt{2}$),
設它的標準方程為x2=2py(p>0)
∴4=4$\sqrt{2}$p,
解得:p=$\frac{\sqrt{2}}{2}$.
∴x2=$\sqrt{2}$y.
故答案為:y2=2x或x2=$\sqrt{2}$y.
點評 本題考查了拋物線的標準方程,解題過程中要注意對稱軸是x軸和y軸兩種情況作答,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{\sqrt{5}}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}\overrightarrow{AC}$+$\frac{1}{3}$$\overrightarrow{AB}$ | B. | $\frac{1}{2}\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{AB}$ | C. | $\frac{1}{6}$$\overrightarrow{AC}$+$\frac{1}{2}\overrightarrow{AB}$ | D. | $\frac{1}{6}$$\overrightarrow{AC}$+$\frac{3}{2}$$\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | g(x)∉P,h(x)∈P | B. | g(x)∈P,h(x)∈P | C. | g(x)⊆P,h(x)⊆P | D. | g(x)∈P,h(x)∉P |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=3-x | B. | f(x)=$\frac{1}{x-1}$ | C. | f(x)=x2-2x-1 | D. | f(x)=-|x| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12.5% | B. | 50% | C. | 75% | D. | 87.5% |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | -2 | D. | -1 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com