3.已知函數(shù)f(x)=|x-2|+1,g(x)=kx,若方程f(x)=g(x)有且只有一個正實根,則實數(shù)k的取值范圍是$[1,+∞)∪\{\frac{1}{2}\}$.

分析 畫出函數(shù)f(x)、g(x)的圖象,由題意可得函數(shù)f(x)的圖象(藍線)和函數(shù)g(x)的圖象(紅線)有兩個交點,數(shù)形結(jié)合求得方程f(x)=g(x)有且只有一個正實根時,k的范圍.

解答 解:由題意可得函數(shù)f(x)的圖象(藍線)
和函數(shù)g(x)的圖象(紅線)有兩個交點,
如圖所示:KOA=$\frac{1}{2}$,
當k大于1時,滿足方程f(x)=g(x)有且只有一個正實根,
數(shù)形結(jié)合可得k≥1,或k=$\frac{1}{2}$,
故答案為:$[1,+∞)∪\{\frac{1}{2}\}$.

點評 本題主要考查函數(shù)的零點與方程的根的關系,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.終邊在第三象限的角的集合可以表示為{α|180°+k•360°<α<270°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.若函數(shù)$f(x)=\frac{{a{x^2}+4}}{bx}$,且f(1)=5,f(2)=4.
(1)求a,b的值,寫出f(x)的表達式;
(2)求證f(x)在[2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若偶函數(shù)f(x)在區(qū)間[-1,0)上為減函數(shù),α,β為任意一個銳角三角形的兩個內(nèi)角,則有( 。
A.f(sinα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(cosα)>f(cosβ)D.f(cosα)>f(sinβ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,M、N分別是四面體OABC的邊OA,BC的中點,$\overrightarrow{MP}=3\overrightarrow{PN}$,若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}+z\overrightarrow{OC}$,則x、y、z的值分別為(  )
A.$\frac{1}{6}$,$\frac{1}{3}$,$\frac{1}{3}$B.$\frac{1}{3}$,$\frac{1}{6}$,$\frac{1}{6}$C.$\frac{1}{8}$,$\frac{3}{8}$,$\frac{3}{8}$D.$\frac{3}{8}$,$\frac{1}{8}$,$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列關于命題正確的個數(shù)為( 。
①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
②“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件;
③若p∨q為真命題,則p∧q為真命題.
④命題“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”
⑤當x>0時,恒有x>sinx.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知a,b是非零實數(shù),f(x)=ebx-ax,若對任意的,x∈R,f(x)≥1恒成立,則$\frac{a}$=( 。
A.2B.ln2C.1D.$\root{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設函數(shù)y=f(x)在R上有定義,對于任一給定的正數(shù)p,定義函數(shù)${f_p}(x)=\left\{\begin{array}{l}f(x),f(x)≤p\\ p,f(x)>p\end{array}\right.$,則稱函數(shù)fp(x)為f(x)的“p界函數(shù)”,若給定函數(shù)f(x)=x2-2x-1,p=2,則下列結(jié)論不成立的是:②.
①fp[f(0)]=f[fp(0)];       ②fp[f(1)]=f[fp(1)];
③fp[fp(2)]=f[f(2)];       ④fp[fp(3)]=f[f(3)].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)是偶函數(shù)又在(0,+∞)上遞減的是( 。
A.y=x2+1B.y=|x|C.y=-x2+1D.$y=\frac{1}{x}$

查看答案和解析>>

同步練習冊答案