已知F(1,0),P是平面上一動(dòng)點(diǎn),P到直線l:x=-1上的射影為點(diǎn)N,且滿足數(shù)學(xué)公式
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)M(1,2)作曲線C的兩條弦MA,MB,設(shè)MA,MB所在直線的斜率分別為k1,k2,當(dāng)k1,k2變化且滿足k1+k2=-1時(shí),證明直線AB恒過定點(diǎn),并求出該定點(diǎn)坐標(biāo).

解:(Ⅰ)設(shè)曲線C上任意一點(diǎn)P(x,y),又F(1,0),N(-1,y),
從而,
=
,得,

化簡得y2=4x,即為所求的P點(diǎn)的軌跡C的對(duì)應(yīng)的方程.
(Ⅱ)設(shè)A(x1,y1)、B(x2,y2),
MA:y=k1(x-1)+2,
MB:y=k2(x-1)+2.
將y=k1(x-1)+2與y2=4x聯(lián)立,得:
,得
同理
而AB直線方程為:

由①②:y1+y2=

代入③得,,
整理得k1k2(x+y+1)+6+y=0.
,故直線AB經(jīng)過定點(diǎn)(5,-6).
分析:(Ⅰ)設(shè)出動(dòng)點(diǎn)P的坐標(biāo),求出N點(diǎn)的坐標(biāo),再求出向量,然后代入整理即可得到點(diǎn)P的軌跡C的方程;
(Ⅱ)設(shè)出點(diǎn)A,B的坐標(biāo),寫出直線MA,MB的方程,和拋物線聯(lián)立后利用根與系數(shù)關(guān)系求出A點(diǎn)和B點(diǎn)的縱坐標(biāo),然后求出兩縱坐標(biāo)的和與積,然后由直線方程的兩點(diǎn)式寫出AB的直線方程,把兩縱坐標(biāo)的和與積代入直線方程后,利用直線系方程的知識(shí)可求出直線AB經(jīng)過的定點(diǎn).
點(diǎn)評(píng):本題考查了拋物線的方程,考查了直線與拋物線的綜合,訓(xùn)練了一元二次方程的根與系數(shù)關(guān)系,考查了直線系方程,此題是有一定難度題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F(1,0),P是平面上一動(dòng)點(diǎn),P到直線l:x=-1上的射影為點(diǎn)N,且滿足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)M(1,2)作曲線C的兩條弦MD,ME,且MD,ME所在直線的斜率為k1,k2,滿足k1k2=1,
求證:直線DE過定點(diǎn),并求出這個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F(1,0),P是平面上一動(dòng)點(diǎn),P到直線l:x=-1上的射影為點(diǎn)N,且滿足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)M(1,2)作曲線C的兩條弦MA,MB,設(shè)MA,MB所在直線的斜率分別為k1,k2,當(dāng)k1,k2變化且滿足k1+k2=-1時(shí),證明直線AB恒過定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臺(tái)州模擬)已知F(1,0),P是平面上一動(dòng)點(diǎn),P在直線l:x=-1上的射影為點(diǎn)N,且滿足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)過F的直線與軌跡C交于A、B兩點(diǎn),試問在直線l上是否存在一點(diǎn)Q,使得△QAB為等邊三角形?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省臺(tái)州市四校高三聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知F(1,0),P是平面上一動(dòng)點(diǎn),P在直線l:x=-1上的射影為點(diǎn)N,且滿足
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)過F的直線與軌跡C交于A、B兩點(diǎn),試問在直線l上是否存在一點(diǎn)Q,使得△QAB為等邊三角形?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案