已知函數(shù)f(x)=-(1+λ)x2+2(1-λ)x+1在[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.
考點:二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分二次項的系數(shù)大于零、等于零、小于零三種情況,分別利用條件以及二次函數(shù)的性質(zhì),分別求得實數(shù)λ的取值范圍,再取并集,即得所求.
解答: 解:當(dāng)-(1+λ)>0,即λ<-1時,應(yīng)有
2(1-λ)
2(1+λ)
≤-1,即
2
1+λ
≤0,求得λ<-1,∴λ<-1.
當(dāng)-(1+λ)=0,即λ=-1時,f(x)=4x+1,滿足在[-1,1]上是增函數(shù).
 當(dāng)-(1+λ)<0,即λ>-1時,應(yīng)有有
2(1-λ)
2(1+λ)
≥1,即
1+λ
≤0,求得λ≤0,∴-1<λ≤0.
綜上可得,實數(shù)λ的取值范圍為(-∞,0].
點評:本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,向量
a
,
b
c
在由單位長度為1的正方形組成的網(wǎng)格中,則
a
•(
b
+
c
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的是( 。
A、若m∥n,n?α則 m∥α
B、若m?α,α⊥β,則m⊥β
C、若m∥n,m⊥α,則n⊥α
D、若m⊥n,m?α,n?β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某商業(yè)中心O有通往正東方向和北偏東30°方向的兩條街道,某公園P位于商業(yè)中心北偏東θ角(0<θ<
π
2
,tanθ=3
3
),且與商業(yè)中心O的距離為
21
公里處,現(xiàn)要經(jīng)過公園P修一條直路分別與兩條街道交匯于A,B兩處.
(1)當(dāng)AB沿正北方向時,試求商業(yè)中心到A,B兩處的距離和;
(2)若要使商業(yè)中心O到A,B兩處的距離和最短,請確定A,B的最佳位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某供貨商擬從碼頭A發(fā)貨至其對岸l的兩個商場B,C處,通常貨物先由A處船運至BC之間的中轉(zhuǎn)站D,再利用車輛轉(zhuǎn)運.如圖,碼頭A與兩商場B,C的距離相等,兩商場間的距離為20千米,且∠BAC=
π
2
.若一批貨物從碼頭A
至D處的運費為100元/千米,這批貨到D后需分別發(fā)車2輛、4輛轉(zhuǎn)運至B、C處,每輛汽車運費為25元/千米.設(shè)∠ADB=α,該批貨總運費為S元.
(Ⅰ)寫出S關(guān)于α的函數(shù)關(guān)系式,并指出α的取值范圍;
(Ⅱ)當(dāng)α為何值時,總運費S最?并求出S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:log318-log32+2log52•log25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x0∈R,ax02+1≤0,命題q:關(guān)于x的不等式ax2-ax+1>0的解集為R,若“p或q”與“¬p”同時為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法正確的是(  )
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、命題“若x=y,則sinx=siny”的逆否命題為真命題
C、若p∧q為假命題,則p,q均為假命題
D、若關(guān)于x的不等式ax2+ax-2<0恒成立,則-8<a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a2=5.
(1)求{an}的通項公式.
(2)求
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
關(guān)于n的表達式.

查看答案和解析>>

同步練習(xí)冊答案