已知函數(shù)f(x)=lnx+2xf′(1)(x>0),其中f′(x)是f(x)的導(dǎo)函數(shù),則在點(diǎn)P(1,f(1))處的切線方程為
x+y+1=0
x+y+1=0
分析:求出f′(x),由題意可知曲線在點(diǎn)(1,f(1))處的切線方程的斜率等于f′(1),所以把x=1代入到f′(x)中即可求出f′(1)的值,得到切線的斜率,然后把x=1和f′(1)的值代入到f(x)中求出切點(diǎn)的縱坐標(biāo),根據(jù)切點(diǎn)坐標(biāo)和斜率直線切線的方程即可.
解答:解:f′(x)=
1
x
+2f′(1)
由題意可知,曲線在(1,f(1))處切線方程的斜率k=f′(1),
則f′(1)=1+2f′(1),解得f′(1)=-1,
則f(1)=ln1+2×(-1)=-2,所以切點(diǎn)(1,-2)
所以切線方程為:y+2=-(x-1)化簡得x+y+1=0.
故答案為:x+y+1=0.
點(diǎn)評:此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求過曲線上某點(diǎn)切線方程的斜率,會(huì)根據(jù)一點(diǎn)和斜率寫出直線的方程,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案