分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,求最大值.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y-1得y=-2x+z+1,
平移直線y=-2x+z+1,
由圖象可知當直線y=-2x+z+1經(jīng)過點A時,直線y=-2x+z+1的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{x=1}\\{x-y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即A(1,4),
代入目標函數(shù)z=2x+y-1得z=2×1+4-1=5.
即目標函數(shù)z=2x+y-1的最大值為5.
故答案為:5.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y=0或$\frac{x}{25}$+y=0 | B. | x-y=0或$\frac{x}{25}$+y=0 | C. | x+y=0或$\frac{x}{25}$-y=0 | D. | x-y=0或$\frac{x}{25}$-y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{7}}}{7}$ | B. | $\frac{{2\sqrt{7}}}{7}$ | C. | $\frac{{\sqrt{7}}}{14}$ | D. | $\frac{{5\sqrt{7}}}{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最小值0,最大值9 | B. | 最小值2,最大值9 | ||
C. | 最小值3,最大值10 | D. | 最小值2,最大值10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com