若非零向量數(shù)學(xué)公式,則△ABC的形狀是


  1. A.
    等邊三角形
  2. B.
    等腰三角形
  3. C.
    直角三角形
  4. D.
    等腰直角三角形
C
分析:利用向量的減法運(yùn)算,可得,兩邊平方,化簡(jiǎn)即可得到結(jié)論.
解答:∵非零向量

∴兩邊平方可得=
=0
∴AB⊥AC
故選C.
點(diǎn)評(píng):本題考查向量的運(yùn)算,考查向量的數(shù)量積,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出命題①零向量的長(zhǎng)度為零,方向是任意的.②若
a
b
都是單位向量,則
a
=
b

③向量
AB
與向量
BA
相等.④若非零向量
AB
CD
是共線向量,則A,B,C,D四點(diǎn)共線.
以上命題中,正確命題序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列敘述錯(cuò)誤的是
①②③④⑤⑥
①②③④⑤⑥

①若
a
b
,
b
c
,則
a
c

②若非零向量
a
b
方向相同或相反,則
a
+
b
a
b
之一的方向相同;
③|
a
|+|
b
|=|
a
+
b
|?
a
b
方向相同;
④向量
b
與向量
a
共線的充要條件是有且只有一個(gè)實(shí)數(shù)λ,使得
b
a

AB
+
BA
=0

⑥若λ
a
b
,則
a
=
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•寧波模擬)若非零向量
AB
,
AC
BC
滿足(
AB
|
AB
|
+
AC
|
AC
|
)•
BC
=0
,且
AC
|
AC
|
BC
|
BC
|
=
2
2
,則△ABC為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量的命題:①若非零向量
a
=(x , y)
,向量
b
=(-y , x)
,則
a
b
;②四邊形ABCD是菱形的充要條件是
AB
=
DC
|
AB
|=|
AD
|
;③若點(diǎn)G是△ABC的重心,則
GA
+
GB
+
CG
=0
④△ABC中,
AB
CA
的夾角為180°-A,其中正確的命題序號(hào)是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:①向量a與b平行,則a與b的方向相反或者相同;②△ABC中,必有
AB
+
BC
+
CA
=0

③四邊形ABCD是平行四邊形的充要條件是
AB
=
DC
;④若非零向量a與b方向相同或相反,則a+b與a、b之一方向相同.其中正確的命題為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案