A. | $\frac{3}{2}$ | B. | $-\frac{4}{3}$ | C. | $-\frac{3}{2}$ | D. | $-\frac{5}{2}$ |
分析 推導(dǎo)出{an}有連續(xù)四項在{-54,-24,18,36,81}中,從而q<0,且負(fù)數(shù)項為相隔兩項等比數(shù)列各項的絕對值遞增,按絕對值的順序排列上述數(shù)值,由此能示出結(jié)果.
解答 解:數(shù)列{bn}有連續(xù)四項在集合{-53,-23,19,37,82}中,
且bn=an+1(n∈N*),∴an=bn-1,
則{an}有連續(xù)四項在{-54,-24,18,36,81}中,
∵數(shù)列{an}是公比為q(|q|>1)的等比數(shù)列,
等比數(shù)列中有負(fù)數(shù)項,則q<0,且負(fù)數(shù)項為相隔兩項
∵|q|>1,∴等比數(shù)列各項的絕對值遞增,按絕對值的順序排列上述數(shù)值18,-24,36,-54,81,
相鄰兩項相除$\frac{-24}{18}$=-$\frac{4}{3}$,$\frac{-36}{24}$=-$\frac{3}{2}$,$\frac{-54}{36}$=-$\frac{3}{2}$,$\frac{81}{-54}$=-$\frac{3}{2}$,
∵|q|>1,∴-24,36,-54,81是{an}中連續(xù)的四項,此時q=-$\frac{3}{2}$.
故選:C.
點評 本題考查等比數(shù)列的公比的求法,是中檔題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①和⑤ | B. | ②和③ | C. | ④和⑤ | D. | ④和③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\sqrt{6}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | -$\frac{1}{6}$ | C. | $\frac{1}{6}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com