在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足sinB+
3
cosB=
3
,a=1

(I)求角B的大。
(II)若b是a和c的等比中項(xiàng),求△ABC的面積.
分析:(I)題設(shè)利用兩角和公式整理等式求得sin(B+
π
3
)的值,進(jìn)而求得B.
(II)根據(jù)等比中項(xiàng)性質(zhì)可求得b2=ac,代入余弦定理中求得a與c的值,進(jìn)而可推斷出三角形為正三角形,進(jìn)而求得三角形的面積.
解答:解:(I)由sinB+
3
cosB=
3
,
sin(B+
π
3
)=
3
2
,
由B∈(0,π)得B+
π
3
∈(
π
3
,
3
)
,故B+
π
3
=
3

B=
π
3

(II)由b是a和c的等比中項(xiàng)得b2=ac
又由余弦定理得b2=a2+c2-2ac•cosB=a2+c2-2ac•cos
π
3
=a2+c2-ac,
故ac=a2+c2-ac,得(a-c)2=0,得a=c=1,
∴b=
ac
=1
故△ABC為正三角形
S△ABC=
3
4
點(diǎn)評(píng):本題主要考查了余弦定理的應(yīng)用,兩角和公式的化簡(jiǎn)求值.考查了學(xué)生對(duì)基礎(chǔ)知識(shí)點(diǎn)綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案