【題目】如圖是1990年-2017年我國勞動年齡(15-64歲)人口數(shù)量及其占總?cè)丝诒戎厍闆r:
根據(jù)圖表信息,下列統(tǒng)計結(jié)論不正確的是( 。
A. 2000年我國勞動年齡人口數(shù)量及其占總?cè)丝诒戎氐哪暝龇鶠樽畲?/span>
B. 2010年后我國人口數(shù)量開始呈現(xiàn)負(fù)增長態(tài)勢
C. 2013年我國勞動年齡人口數(shù)量達(dá)到峰值
D. 我國勞動年齡人口占總?cè)丝诒戎貥O差超過
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)參加項目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實的需要,從項目中調(diào)出人參與項目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤萬元(),項目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項目從事售后服務(wù)工作?
(2)在(1)的條件下,當(dāng)從項目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時,才能使得項目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線: .以為極點(diǎn), 軸的非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)射線()與曲線的異于極點(diǎn)的交點(diǎn)為,與曲線的交點(diǎn)為,求.
【答案】(1) 的極坐標(biāo)方程為, 的極坐標(biāo)方程為;(2) .
【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線,再根據(jù)將曲線的極坐標(biāo)方程;(2)將代人曲線的極坐標(biāo)方程,再根據(jù)求.
試題解析:(1)曲線的參數(shù)方程(為參數(shù))
可化為普通方程,
由,可得曲線的極坐標(biāo)方程為,
曲線的極坐標(biāo)方程為.
(2)射線()與曲線的交點(diǎn)的極徑為,
射線()與曲線的交點(diǎn)的極徑滿足,解得,
所以.
【題型】解答題
【結(jié)束】
23
【題目】設(shè)函數(shù).
(1)設(shè)的解集為,求集合;
(2)已知為(1)中集合中的最大整數(shù),且(其中,,為正實數(shù)),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】畢達(dá)哥拉斯樹是由畢達(dá)哥拉斯根據(jù)“勾股定理”所畫出來的一個可以無限重復(fù)的圖形,也叫“勾股樹”,其是由一個等腰直角三角形分別以它的每一條邊向外作正方形而得到.圖1所示是第1代“勾股樹”,重復(fù)圖1的作法,得到第2代“勾股樹”(如圖2),如此繼續(xù).若“勾股樹”上共得到8191個正方形,設(shè)初始正方形的邊長為1,則最小正方形的邊長為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達(dá)線人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了倍
C. 2015年與2018年藝體達(dá)線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線C1:的準(zhǔn)線1與x軸交于橢圓C2:的右焦點(diǎn)F2,F1為C2的左焦點(diǎn).橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點(diǎn)P,連接PF1并延長其交C1于點(diǎn)Q,M為C1上一動點(diǎn),且在P,Q之間移動.
(1)當(dāng)取最小值時,求C1和C2的方程;
(2)若△PF1F2的邊長恰好是三個連續(xù)的自然數(shù),當(dāng)△MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:
(1)平面平面;
(2)若為棱上一點(diǎn),且與平面所成角的正弦值為,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E.
(1)求證:四邊形ACC1A1為矩形;
(2)求二面角E-B1C-A1的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com