已知橢圓與雙曲線x2-y2=0有相同的焦點,且離心率為.
(1)求橢圓的標準方程;
(2)過點P(0,1)的直線與該橢圓交于A,B兩點,O為坐標原點,若=2,求△AOB的面積.
(1)=1(2)
(1)設橢圓方程為=1,a>b>0,
由c=,可得a=2,b2=a2-c2=2,
所以橢圓的標準方程為=1.
(2)設A(x1,y1),B(x2,y2),由=2,得可得x1=-2x2.①
設過點P的直線方程為y=kx+1,代入橢圓方程,整理得(2k2+1)x2+4kx-2=0,
則x1+x2=-,②x1x2,③
由①②得x2,將x1=-2x2代入③得,
所以,解得k2.
又△AOB的面積S=|OP|·|x1-x2|=·.所以△AOB的面積是.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的右焦點為F(1,0),且點(-1,)在橢圓C上.
(1)求橢圓C的標準方程.
(2)已知點Q(,0),動直線l過點F,且直線l與橢圓C交于A,B兩點,證明:·為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知命題:方程所表示的曲線為焦點在軸上的橢圓;命題:實數(shù)滿足不等式.
(1)若命題為真,求實數(shù)的取值范圍;
(2)若命題是命題的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的一個焦點與拋物線的焦點重合,且截拋物線的準線所得弦長為,傾斜角為的直線過點.
(1)求該橢圓的方程;
(2)設橢圓的另一個焦點為,問拋物線上是否存在一點,使得關于直線對稱,若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓C:+=1(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,則C的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,已知橢圓C:+y2=1,在橢圓C上任取不同兩點A,B,點A關于x軸的對稱點為A′,當A,B變化時,如果直線AB經(jīng)過x軸上的定點T(1,0),則直線A′B經(jīng)過x軸上的定點為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,F(xiàn)是橢圓的右焦點,以點F為圓心的圓過原點O和橢圓的右頂點,設P是橢圓上的動點,P到橢圓兩焦點的距離之和等于4.

(1)求橢圓和圓的標準方程;
(2)設直線l的方程為x=4,PM⊥l,垂足為M,是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F1,F(xiàn)2是橢圓的兩焦點,過點F2的直線交橢圓于A,B兩點.在
△AF1B中,若有兩邊之和是10,則第三邊的長度為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓=1(a>b>0)的左、右頂點分別是A、B,左、右焦點分別是F1、F2.若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為________.

查看答案和解析>>

同步練習冊答案