數(shù)列{an}是公差不為0的等差數(shù)列,且a2+a6=a8,則數(shù)學(xué)公式=________.

3
分析:設(shè)出等差數(shù)列的首項(xiàng)和公差,然后由a2+a6=a8列式求得a1和d的關(guān)系,最后把要求的比式轉(zhuǎn)化為僅含有公差d的式子,則答案可求.
解答:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
由a2+a6=a8,得a1+d+a1+5d=a1+7d,
即a1=d,
所以==
故答案為3.
點(diǎn)評:本題考查了等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,考查了學(xué)生的計(jì)算能力,此題是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,前n項(xiàng)和為Sn,滿足a22+a32=a42+a52,S7=7,則使得
amam+1am+2
為數(shù)列{an}中的項(xiàng)的所有正整數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,a1=1且a1,a3,a6成等比數(shù)列,則{an}的前n項(xiàng)和Sn等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•德州一模)數(shù)列{an}是公差不小0的等差數(shù)列a1、a3,是函數(shù)f(x)=1n(x2-6x+6)的零點(diǎn),數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn=1-2bn(n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是公差不為0的等差數(shù)列,其前n項(xiàng)和為Sn,且S9=135,a3,a4,a12成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)是否存在正整數(shù)m,使
a
2
m
+
a
2
m+2
2am+1
仍為數(shù)列{an}中的一項(xiàng)?若存在,求出滿足要求的所有正整數(shù)m;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,它的前n項(xiàng)和為Sn,且S1、S2、S4成等比數(shù)列,則
a4
a1
等于(  )
A、3B、4C、6D、7

查看答案和解析>>

同步練習(xí)冊答案